AICon议程上新60%,阿里国际、360智脑、科大讯飞、蔚来汽车分享大模型探索与实践 了解详情
写点什么

阿里自研开源框架 Midway Serverless ,如何让前端提效 50%?

  • 2020-07-09
  • 本文字数:3440 字

    阅读完需:约 11 分钟

阿里自研开源框架 Midway Serverless ,如何让前端提效 50%?

去年开始,阿里前端及阿里的多个团队联合开始了一项“秘密”任务,使用 Serverless 这一新一代研发架构,希望能大量减少研发人员使用基础设施和运维的成本。目前这一框架已经实现前端提效 50%,且已在 Github 开源,开源地址见链接

Midway Serverless

Midway 之前是传统的 Web 栈框架,和业界现有的 EggJS,NestJS 等解决的是类似的问题,从中后台到移动端应用,前端都广泛采用了这些框架来构建自己的业务系统。阿里也不例外,Node.js 应用非常多,但是这些系统有一个共性,大多数服务器的 CPU 使用率非常低,这无疑是一种资源的巨大浪费。


这种资源浪费的常态以及应用的规模化几何倍数的增产,让应用治理的人员头疼不已。于是,阿里把目光转向 Serverless 架构,他们开始去思考,如何有效去减少研发人员使用基础设施的效率和运维的成本。


Serverless 和 FaaS

FaaS 是 Serverless 架构的其中一种形态,也是这次 Midway 希望解决的场景。在 Midway Serverless 1.0 之前,我们在 FaaS 上投入了许多,但是事实上,Serverless 架构非常庞大,FaaS 只是其中的一小部分,基于事件驱动的模型,从微服务(MicroService)这种专注于单一职责与功能的小型功能块演进而来。如今这种更加“代码碎片化”的软件架构范式,相比微服务更加细小的程序单元,给业务代码提供了无与伦比的灵活性。


按照《福布斯》杂志的统计,在商业和企业数据中心的典型服务器仅提供 5%~15% 的平均最大处理能力的输出,这无疑是一种资源的巨大浪费。而随着 Serverless 架构的出现,让服务提供商提供我们的计算能力最大限度满足实时需求,这将使我们能更有效地利用计算资源。


阿里目前使用了 FaaS 来作为业务的落地容器,希望能进一步减少容器的规格,降低成本。集团机器的成本当前是按 CPU Core 算的,以 4C8G(4 核 8G)的机器为例,一个中后台应用最少需要 2 台机器,而上了 FaaS,能减少到 1C,乃至 0.5C,这个成本下降的非常可观。

落地前端

在阿里“大中台小前台”的趋势下,前端是最接近用户且活力迸发的团队。前端一直希望能够有机会摆脱“资源”的困境,对整体工种的职能、边界有更广泛而清晰的拓展需求,造就了如今前端的范围不断衍生,从端侧到智能化,无一不是职能扩大的体现。


对前端开发者而言,Node.js 赋予了开疆拓土的能力,自前后端分离开始,从端到全栈,Node.js 已经成为前端学习的标配,而 DevOPS 的提出,也让前端逐步走向开发自治,运维自驱的路子。而阿里在实际实践中发现,大部分前端的确在朝着那个方向走,但是更多的是在业务和自治之间产生了一些迷惘,这两者的关系其实很不容易平衡,时间一久也会对业务的规模化产生一些影响。



而 Serverless 的出现,正好让前端有机会减少整个 OPS 环节,更加聚焦于业务本身;同时,由于整体的代码量减少以及轻量化开发理念、部署平台能力的增强,让整个业务的规模化成本越来越低。


之前,有人把 Serverless 比作前端的 3.0,这不无道理。Node.js 的轻量、快速已经得到了业界技术人员的广泛认可,在 Serverless 时代,容器的快速调度、代码的快速启动,都是非常重要的指标,而 Node.js 在这方面的优势非常明显。

前端提效 50%

这个数值在我们看来,Serverless 带来的效能变化的数值可能更大。其中分为规模化成本交付速度两个方面。

降低规模化成本

首先是服务器成本


从容器本身的角度来看,上文已经简单演算过,从传统容器到函数,整个容器资源从固定规格到更加细粒度的规格去逐步演进,这将更加符合场景的诉求。经过我们一年的跟踪,中后台应用的机器成本能降低 70% 以上,而实际移动端业务,也达到了 30% 左右。


其次是治理成本


越是大的公司,历史包袱越是严重,今年的阿里集团内部,还存留着 Node.js V6 乃至 V4 的代码。每年的 Node.js 版本升级、框架升级、库升级都要至少长达几个月,甚至几年。


而如今,函数运行时(Runtime)是前端自己编写的,我们可以将需要治理的 Node.js 版本、框架,乃至中间件都埋入其中,这就需要定制整个运行时及其通用化的能力。


阿里的内的函数服务有多种,提供了不一样的基建和网关服务。今天淘系前端能够使用一套代码部署在不同的平台之上,就得益于 Midway Sererless 底层的多平台适配能力。同时,这套代码的防腐层能力也正好能抹平社区的平台差异性。


针对每个平台,Midway Serverless 提供了不同的运行时启动器,用于抹平各个平台的差异,并且通过这些启动器,将各个平台的出入参,以及各个 event 结构,网关的返回格式进行规则化,让用户尽可能不感知底层容器以及协议的差异。



阿里通过这套方案,将一套代码部署在不同的函数服务之上,提供出不同协议的服务。所以到社区,阿里开源的方案也同样适用于多个平台,比如阿里云、腾讯云或者是未来的 AWS Lambda、Azure 等。


经过这层防腐和定制,整个运行时的更新变的简单,将传统应用需要半年起的版本推平工作,在短短一周内就完成了。举个例子,底层有个和平台的连接协议库有安全性漏洞,从接到安全报告开始,我们就需要做以下两件事,一是从平台数据拉取受影响的函数范围,给所有业务方进行了安全性邮件推送,并告知在一定时间之内不做主动申报的,将默认统一自动更新。二是在流量低谷期进行滚动更新,并以告知业务及时关注和测试。经过这样的流程,整个安全性更新在极短的时间内就统一处理完毕,这在以往的应用场景下,几乎是不可能的。



最后是安全生产成本,这块在阿里内部的诉求较大,但是中小型公司应该不多,这里就不再详述了。


通过这三块的管控和治理,使得在 Serverless 架构下,集团业务规模化成本极速降低。

交付速度

除了规模化成本外,另外一块就是业务交付的情况。前端面向的移动端和中后台两大场景都需要快速的交付,以现在的情况来看,前端依旧是研发的瓶颈,在使用了 Serverless 之后,原有的复杂流程已经无法满足现有的诉求。


去年我们团队在 GMTC 及 D2 分享中说过,前端自建了一套研发流程和平台,用于满足在新的场景的测试、灰度和回滚。整个研发流程,节点比以往更少,更容易聚焦。



而另一边,整个研发的效率,也有了不小的提升。


前端开发的效率,得益于前后端的融合,一体化开发和交付的速度。传统的前端研发,需要在前端仓库和 Node.js 端仓库多处进行开发,发布流程也是分离的。而在 Serverless 场景下,Midway Serverless 设计了一体化开发和发布的方案,这让前端能将业务在同一个仓库开发,同一个流程发布。特别是那些维护多业务的同学,感触会更深。


除了一体化的开发、调试,部署之外,从代码角度看,原有的编码习惯被保留,无需再度学习新的编程 API 也是一个方面。Midway Serverless 除了提供基于 TypeScript 和装饰器的编码风格之外,也提供了一些传统应用 Egg 应用迁移的方案,在不同的 BU 中也进行了落地尝试,效果非常不错。


经过一年我们在平台测的统计和业务开发方的走访,新的研发模式对业务整体的交付效率有一定的提升,这个提升是普适性的。


以前端完成需求为例,传统完成业务需求需要后端的介入以及联调,而新的研发模式在代码层面会开发更快,虽然单人来看工作量增加了,但是整体的交付时间,投入人员以及联调成本都有明显的降低。



除了业务感性的交付数据外,我们还统计了整体的研发代码量,提交的代码频次以及需求的迭代周期和发布。经过一年业务跟踪和数据的测算,我们得出整体前端人效的提升约为 48%,整个核心的算法牵扯到很对内部的数据,抱歉无法提供,欢迎大家入职观摩。

Serverless 的弊端

任何事物都有两面性。Serverless 优势固然的大,但是毕竟是新东西,特别是在企业中落地的时候,难免会遇到一些问题。


一是基建的缺失,传统的各种客户端、日系投递、链路追踪等能力都非常的完善,而函数这些新的事物还需要时间逐步沉淀,加上弹性容器的影响,整个链路都还是新生事物,需要时间去验证稳定性和可靠性。


二是业务同学的整体理念还是停留在传统应用的层面,对函数的运作机制,事件触发的行为了解不深,加上框架做了很多屏蔽的工作,很容易出现某些代码编写错误或者前期需求评估不到位,能力无法实现的情况。这些都需要慢慢的打磨,相信在不断的实践下,整体都会越变越好。

最后

我们可以看到,50% 的计算方式是一个相对感性的数字,但是 Serverless 在其中实实在在的体现出了它的魅力和价值。最后庆祝一下 Midway Serverless v1.0 发布。通过整个 Midway Serverless 新体系,我们将阿里的 Serverless 能力逐步开放,希望整个前端能有不同的思路去承担更大的业务职能,进入一个崭新的时代。


活动推荐


最近,由于疫情影响,我们准备了 QCon+ 线上体验,欢迎围观。


2020-07-09 13:013825

评论

发布
暂无评论
发现更多内容

容器 & 服务:Helm Charts配置文件分析

程序员架构进阶

容器 Helm 11月日更 chart

Android C++系列:认识JNI

轻口味

c++ android jni 11月日更

Alibaba内部Java面试手册,10W字全是精华

Java 程序员 后端

as-if-serial规则和happens-before规则的区别

Java 程序员 后端

BATJ互联网月薪45K的Java岗面试题首次曝光,掌握这些Offer指定跑不了

Java 程序员 后端

AQS源码分析看这一篇就够了

Java 程序员 后端

Chrome 灵魂插件!爱了爱了!

Java 程序员 后端

《Kubernetes in action 读书笔记》:Kurbernetes 架构设计

后台技术汇

Kubernetes 11月日更

AtomicBoolean介绍与使用

Java 程序员 后端

69-个经典-Spring-面试题和答案详解(下)

Java 程序员 后端

构建大型 Vue.js 应用程序文件结构

devpoint

Vue 11月日更

模块三课后作业-详细架构设计文档-外包学生管理系统

断水风春

架构实战营

CAT中实现异步请求的调用链查看

Java 程序员 后端

Prometheus HTTP API 查询(四)Target 和查询结果格式

耳东@Erdong

Prometheus PromQL HTTP API 11月日更

3 条掏心掏肺的建议,新手学习编程必备,快上车!

Java 程序员 后端

4月面试5月成功入职阿里,工作之余整理复盘:面试经历+备战经验分享!

Java 程序员 后端

588页!三个通宵学完这份“宝典”,4面斩获字节跳动offer

Java 程序员 后端

BIGO Java 三面 + HR 面面经(已意向)

Java 程序员 后端

CentOS7系统中安装JDK8

Java 程序员 后端

ConcurrentHashMap锁的前世今生,了解一下

Java 程序员 后端

7月份了,再不准备金九银十就晚了,阿里2021最新数据结构与算法面试题手册

Java 程序员 后端

AQS-AbstractQueuedSynchronizer源码解析(下)

Java 程序员 后端

Bootstrap框架快速上手

Java 程序员 后端

Chrome上的这些灵魂插件太猛了,碾压其他同款

Java 程序员 后端

ARM架构下的Docker环境,OpenJDK官方没有8版本镜像,如何完美解决?

Java 程序员 后端

BS-GX-018 基于SSM实现在校学生考试系统

Java 程序员 后端

CentOS安装rar及用法

Java 程序员 后端

4年Java程序员十面阿里终拿下offer,评级P6+年薪30-40w无股票

Java 程序员 后端

【Promise 源码学习】第三篇 - 实现一个简版 Promise

Brave

Promise 11月日更

ApplicationContextAware使用理解

Java 程序员 后端

Centos7搭建maven私服nexus3

Java 程序员 后端

阿里自研开源框架 Midway Serverless ,如何让前端提效 50%?_服务革新_陈仲寅_InfoQ精选文章