写点什么

你与 Kafka 监控进阶,只差一个“视角”的距离

  • 2019-08-11
  • 本文字数:2799 字

    阅读完需:约 9 分钟

你与Kafka监控进阶,只差一个“视角”的距离

Kafka,作为分布式高吞吐发布订阅的消息系统,广泛应用于消息队列、大数据流计算分析等场景。本文介绍了 Kafka 系统监控方案,以及站在用户视角阐述如何监控好 Kafka 实际产品。

Kakfa 监控实践

监控工具选择

实际使用中对比了多种 Kafka 监控工具,最终选择如下几种工具:


Kafka Monitor:这是 LinkedIn 开源的 Kafka 核心功能监控工具,并且提供了可视化界面。它可以模拟数据生产并消费,基本上覆盖了黑盒监控大部分指标,包括集群核心功能、数据读写、读写延迟等。使用者使用成本也相对简单,只需对接告警系统即可。


如果你的产品用到了 Kafka,强烈推荐使用 Kafka Monitor。



▲图一 Kafka Monitor 可视化界面



▲表一 Kafka Monitor 监控指标样例


Kafka Manager:这是 Yahoo 开源的 Kafka 管理工具,更偏重于对 Kafka 集群指标采集,同时也有一些主题管理功能。



▲图二 Kafka Manager 界面


**Jmxtrans+Influxdb:**Jmxtrans 通过 Jmx 端口可以采集 Kafka 多种维度监控数据,预存储在 Influxdb。Jmxtrans 也是非常优秀的工具,通过它采集的数据项很多,因此采集项筛选是一个难题,筛选后的数据不仅可以作为仪表盘展现使用,也可以为后续产品层面的监控做准备。


集群层面的空间使用率相关数据,需要自研工具来完成,附件中提供了参考脚本。



▲图三 Kafka 运维仪表盘部分指标

监控指标

确定黑盒监控指标

黑盒监控指标不符合预期说明集群不能正常工作或出现异常,它更多是一种现象。常用的黑盒监控指标有:集群核心功能、数据读写、读写延迟等。

确定白盒监控指标

对比其他存储组件,大部分监控指标是通用的,或者能找到类似的监控指标,白盒监控是黑盒监控的补充,服务于故障定位,从集群容量、流量、延迟、错误四个方面梳理。



▲表二 梳理 Kafka 监控指标分类

部分采集指标

核心功能


  • 采集项:produce-availability-avg

  • 说明:单独创建监控主题,对其进行功能监控,覆盖消息生成、写入、消费整个生命周期

  • 数据来源:Kafka Monitor


主题操作


  • 采集项:topic-function

  • 说明:覆盖主题的整个生命周期(创建出的主题要清理,否则主题过多,在实例恢复时会很慢)

  • 数据来源:自研


延迟


  • 采集项:records-delay-ms-avg

  • 说明:生产、消费延迟时间

  • 来源:Kafka Monitor

  • 采集项:records-delay-ms-max

  • 说明:最大延迟时间

  • 来源:Kafka Monitor


流量


  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=*

  • 说明:某一主题每秒写入

  • 来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=*

  • 说明:某一主题每秒读出

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=*

  • 说明:某一主题每秒写入消息数

  • 数据来源:Jmxtrans

  • 采集项:kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce

  • 说明:每秒 Produce 的请求次数

  • 数据来源:Jmxtrans


容量


  • 采集项:kafka.log:type=Log,name=Size,topic=,partition=

  • 说明:分区大小

  • 数据来源:Jmxtrans

  • 采集项:topicSizeALL

  • 说明:某一主题大小(需要基于各 Broker 数据进行计算)

  • 数据来源:自研


错误


  • 采集项:kafka.controller:name=OfflinePartitionsCount,type=KafkaController

  • 说明:没有 Leader 的分区数

  • 数据来源:Jmxtrans

  • 采集项:kafka.controller:name=ActiveControllerCount,type=KafkaController

  • 说明:是否为活跃控制器(整个集群只能有 1 个实例为 1)

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica

  • 说明:副本落后主分片的最大消息数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

  • 说明:正在做同步的分区数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=LeaderCount

  • 说明:Leader 的 Replica 的数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:clientId=,name=ConsumerLag,partition=,topic=*,type=FetcherLagMetrics

  • 说明:消费延迟量(Lag)

  • 数据来源:Jmxtrans

  • 采集项:kafka.log:type=Log,name=LogEndOffset,topic=,partition=

  • 说明:每个分区最后的 Offset

  • 数据来源:Jmxtrans

Kafka 监控经验

  • 通过 Jmxtrans 获取到采集项之后,如果期望获取到全局数据,则必须对所有 Broker 上的数据进行汇总计算,附件中提供了部分 Jmxtrans 采集项计算脚本。

  • 在分区大小告警阈值设置上,主题的某个分区不要过大(我们场景,最大为 800G),否则,在迁移分区时会很慢。

  • Kafka 在不同数据目录分配分区时,会按照分区数来均衡。因此,实际部署中,不同实例最好做到:数据目录大小、数据目录数一致。否则,在集群达到上千个主题后,你的分区迁移工作量会很大。

  • 预采集数据。监控并不能一蹴而就,随着产品或集群变化,需要迭代。因此,需要预采集那些当前看似没有价值的数据,当需要时,所存即所用。另外,从历史故障中进行总结,也可以发掘一些待采集的监控数据。

  • 针对 Kafka,一个可行的监控数据存储、展现工具集:Jmxtrans+Influxdb+Grafana。Grafana 既可以充当巡检仪表盘,也可充当监控数据查看工具。

  • 在 Kafka 采集项获取或分析数据时,Jmxcmd 也是不错的小工具。

Kafka 实际产品监控

数据总线、Kafka 消息队列等公有云产品,一般是基于 Kafka 来实现。按照上述监控方法完善 Kafka 集群监控,可以做到大部分 Kafka 问题都能及时发现。但对用户来说,产品本身的监控才更为重要。

产品 SLO 指标

按照 Google SRE 提出的 SLO(Service Level Objectives 服务等级目标)和“错误预算”理论与实践,需要从用户视角对 Kafka 相关产品进行分析并监控。


以“数据总线”产品为例,这些产品一般提供给用户的核心功能主要有:


  • 数据接入

  • 数据归档


在我们实际产品中,总结了历史故障,确立了当前产品的 SLO 指标,并对其进行监控。部分 SLO 指标:


  • 流数据总线生命周期健康>99.9%

  • 重点用户主题健康>99.9%

  • 归档延迟数据<20 分钟



▲图四 数据总线 SLO 及错误预算部分指标预览

满足多租户

如果只关注整体 SLO 指标,那么有些租户可能会遗漏,对于这些租户的核心功能也需要监控,此时,我们需要借助已有监控工具预采集的数据,这些数据包含了所有主题的相关数据。这样,当我们需要知道用户的主题时,就能快速搜索到对应主题的流量、延迟等密切指标,及时反馈到租户。


可以为租户搜索到的部分指标:


  • kafka.cluster:name=UnderReplicated,partition=*,type=Partition

  • kafka.log:name=LogEndOffset,partition=*,type=Log

  • kafka.log:name=LogStartOffset,partition=*,type=Log

  • kafka.log:name=Size,partition=*,type=Log

  • kafka.server:name=BytesInPerSec,type=BrokerTopicMetrics

  • kafka.server:name=BytesOutPerSec,type=BrokerTopicMetrics

  • kafka.server:name=MessagesInPerSec,topic=*,type=BrokerTopicMetrics



▲图五 搜索某租户部分 SLO 指标结果


附录:


Kafka 监控相关脚本


https://github.com/cloud-op/monitor/tree/master/kafka


文章转载自微信公众号京东云。


2019-08-11 08:3010124

评论

发布
暂无评论
发现更多内容

前端技术培训学习哪个机构好?

小谷哥

浅谈 2022 前端工作流中全流程多层次的四款测试工具

Liam

前端 测试 前端开发 测试工具 测试开发

速剖架构(一)-- 流量的自然走向

Dinfan

架构设计

BIGO 如何做到夜间同时运行 2.4K 个工作流实例?

白鲸开源

spark 工作流调度 Apache DolphinScheduler 离线计算

利用混沌工程提高微服务的弹性

NGINX开源社区

nginx 微服务架构 性能 企业号 2 月 PK 榜

下一朵云,会是谁

ToB行业头条

程序员必备的数据库知识 2:Join 算法

NineData

数据库 程序员 join SQL sever NineData

《流浪地球2》“数字生命”最后一秒拯救人类,现实中AI也正在“长出”灵魂

硬科技星球

RocketMQ 监控告警:生产环境如何快速通过监控预警发现堆积、收发失败等问题?

阿里巴巴云原生

阿里云 RocketMQ 云原生

怎么正确使用 NPS ?用对了才事半功倍

鼎道智联

运营 用户体验 用户推荐

上海前端培训学习的就业前景

小谷哥

干货分享 | 3个Zbrush实用减面工具分享

3DCAT实时渲染

3D渲染 3D模型

NFT铸造系统模式开发定制

开发微hkkf5566

新书上市 | 以过去预测未来,有趣的时间序列

图灵教育

机器学习 统计学 时间序列 时间序列预测

基于流量双发平台的高效回归方案

网易云信

反垃圾 业务集群

干货分享 | UE游戏鼠标双击判定

3DCAT实时渲染

游戏开发 虚幻引擎 ue 游戏开发引擎

Go1.20新版本正式发布,新特性值得一看

王中阳Go

Go golang 高效工作 学习方法

Apache RocketMQ 入选 SegmentFault 年度中国技术品牌影响力企业榜单!

阿里巴巴云原生

阿里云 Apache RocketMQ

巧用Maya轴心操作小技巧,工作事半功倍!

3DCAT实时渲染

Maya,渲染 Autodesk Maya

化繁为简|中信建投基于StarRocks构建统一查询服务平台

StarRocks

数据库 大数据 开源

新书上市 | 以过去预测未来,有趣的时间序列

图灵社区

机器学习 统计学 时间序列 时间序列预测

启科量子解决方案实践:使用QuTrunk+AWS Deep Learning AMI(TensorFlow2)构建量子神经网络

启科量子开发者官方号

人工智能 量子计算

设计模式-工厂方法模式和抽象工厂模式

C++后台开发

数据结构 设计模式 后端开发 Linux服务器开发 C++开发

前端线下面授培训机构的选择

小谷哥

大数据培训学习怎么入门

小谷哥

UE干货| UE虚幻引擎调试神器—控件反射器

3DCAT实时渲染

游戏开发 虚幻引擎 ue 游戏开发引擎

单体应用、SOA、微服务,优劣势都有哪些?

FinFish

微服务 微服务架构 前端开发 移动开发 小程序化

前端报表如何实现无预览打印解决方案或静默打印

葡萄城技术团队

真正的低代码平台

陈飞

PaaS SaaS 低代码平台

点对点传输现状,镭速高速点对点传输解决方案

镭速

尚硅谷发布九章云台项目视频

小谷哥

你与Kafka监控进阶,只差一个“视角”的距离_软件工程_京东云应用研发部_InfoQ精选文章