写点什么

你与 Kafka 监控进阶,只差一个“视角”的距离

  • 2019-08-11
  • 本文字数:2799 字

    阅读完需:约 9 分钟

你与Kafka监控进阶,只差一个“视角”的距离

Kafka,作为分布式高吞吐发布订阅的消息系统,广泛应用于消息队列、大数据流计算分析等场景。本文介绍了 Kafka 系统监控方案,以及站在用户视角阐述如何监控好 Kafka 实际产品。

Kakfa 监控实践

监控工具选择

实际使用中对比了多种 Kafka 监控工具,最终选择如下几种工具:


Kafka Monitor:这是 LinkedIn 开源的 Kafka 核心功能监控工具,并且提供了可视化界面。它可以模拟数据生产并消费,基本上覆盖了黑盒监控大部分指标,包括集群核心功能、数据读写、读写延迟等。使用者使用成本也相对简单,只需对接告警系统即可。


如果你的产品用到了 Kafka,强烈推荐使用 Kafka Monitor。



▲图一 Kafka Monitor 可视化界面



▲表一 Kafka Monitor 监控指标样例


Kafka Manager:这是 Yahoo 开源的 Kafka 管理工具,更偏重于对 Kafka 集群指标采集,同时也有一些主题管理功能。



▲图二 Kafka Manager 界面


**Jmxtrans+Influxdb:**Jmxtrans 通过 Jmx 端口可以采集 Kafka 多种维度监控数据,预存储在 Influxdb。Jmxtrans 也是非常优秀的工具,通过它采集的数据项很多,因此采集项筛选是一个难题,筛选后的数据不仅可以作为仪表盘展现使用,也可以为后续产品层面的监控做准备。


集群层面的空间使用率相关数据,需要自研工具来完成,附件中提供了参考脚本。



▲图三 Kafka 运维仪表盘部分指标

监控指标

确定黑盒监控指标

黑盒监控指标不符合预期说明集群不能正常工作或出现异常,它更多是一种现象。常用的黑盒监控指标有:集群核心功能、数据读写、读写延迟等。

确定白盒监控指标

对比其他存储组件,大部分监控指标是通用的,或者能找到类似的监控指标,白盒监控是黑盒监控的补充,服务于故障定位,从集群容量、流量、延迟、错误四个方面梳理。



▲表二 梳理 Kafka 监控指标分类

部分采集指标

核心功能


  • 采集项:produce-availability-avg

  • 说明:单独创建监控主题,对其进行功能监控,覆盖消息生成、写入、消费整个生命周期

  • 数据来源:Kafka Monitor


主题操作


  • 采集项:topic-function

  • 说明:覆盖主题的整个生命周期(创建出的主题要清理,否则主题过多,在实例恢复时会很慢)

  • 数据来源:自研


延迟


  • 采集项:records-delay-ms-avg

  • 说明:生产、消费延迟时间

  • 来源:Kafka Monitor

  • 采集项:records-delay-ms-max

  • 说明:最大延迟时间

  • 来源:Kafka Monitor


流量


  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=*

  • 说明:某一主题每秒写入

  • 来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=*

  • 说明:某一主题每秒读出

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=*

  • 说明:某一主题每秒写入消息数

  • 数据来源:Jmxtrans

  • 采集项:kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce

  • 说明:每秒 Produce 的请求次数

  • 数据来源:Jmxtrans


容量


  • 采集项:kafka.log:type=Log,name=Size,topic=,partition=

  • 说明:分区大小

  • 数据来源:Jmxtrans

  • 采集项:topicSizeALL

  • 说明:某一主题大小(需要基于各 Broker 数据进行计算)

  • 数据来源:自研


错误


  • 采集项:kafka.controller:name=OfflinePartitionsCount,type=KafkaController

  • 说明:没有 Leader 的分区数

  • 数据来源:Jmxtrans

  • 采集项:kafka.controller:name=ActiveControllerCount,type=KafkaController

  • 说明:是否为活跃控制器(整个集群只能有 1 个实例为 1)

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica

  • 说明:副本落后主分片的最大消息数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

  • 说明:正在做同步的分区数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=LeaderCount

  • 说明:Leader 的 Replica 的数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:clientId=,name=ConsumerLag,partition=,topic=*,type=FetcherLagMetrics

  • 说明:消费延迟量(Lag)

  • 数据来源:Jmxtrans

  • 采集项:kafka.log:type=Log,name=LogEndOffset,topic=,partition=

  • 说明:每个分区最后的 Offset

  • 数据来源:Jmxtrans

Kafka 监控经验

  • 通过 Jmxtrans 获取到采集项之后,如果期望获取到全局数据,则必须对所有 Broker 上的数据进行汇总计算,附件中提供了部分 Jmxtrans 采集项计算脚本。

  • 在分区大小告警阈值设置上,主题的某个分区不要过大(我们场景,最大为 800G),否则,在迁移分区时会很慢。

  • Kafka 在不同数据目录分配分区时,会按照分区数来均衡。因此,实际部署中,不同实例最好做到:数据目录大小、数据目录数一致。否则,在集群达到上千个主题后,你的分区迁移工作量会很大。

  • 预采集数据。监控并不能一蹴而就,随着产品或集群变化,需要迭代。因此,需要预采集那些当前看似没有价值的数据,当需要时,所存即所用。另外,从历史故障中进行总结,也可以发掘一些待采集的监控数据。

  • 针对 Kafka,一个可行的监控数据存储、展现工具集:Jmxtrans+Influxdb+Grafana。Grafana 既可以充当巡检仪表盘,也可充当监控数据查看工具。

  • 在 Kafka 采集项获取或分析数据时,Jmxcmd 也是不错的小工具。

Kafka 实际产品监控

数据总线、Kafka 消息队列等公有云产品,一般是基于 Kafka 来实现。按照上述监控方法完善 Kafka 集群监控,可以做到大部分 Kafka 问题都能及时发现。但对用户来说,产品本身的监控才更为重要。

产品 SLO 指标

按照 Google SRE 提出的 SLO(Service Level Objectives 服务等级目标)和“错误预算”理论与实践,需要从用户视角对 Kafka 相关产品进行分析并监控。


以“数据总线”产品为例,这些产品一般提供给用户的核心功能主要有:


  • 数据接入

  • 数据归档


在我们实际产品中,总结了历史故障,确立了当前产品的 SLO 指标,并对其进行监控。部分 SLO 指标:


  • 流数据总线生命周期健康>99.9%

  • 重点用户主题健康>99.9%

  • 归档延迟数据<20 分钟



▲图四 数据总线 SLO 及错误预算部分指标预览

满足多租户

如果只关注整体 SLO 指标,那么有些租户可能会遗漏,对于这些租户的核心功能也需要监控,此时,我们需要借助已有监控工具预采集的数据,这些数据包含了所有主题的相关数据。这样,当我们需要知道用户的主题时,就能快速搜索到对应主题的流量、延迟等密切指标,及时反馈到租户。


可以为租户搜索到的部分指标:


  • kafka.cluster:name=UnderReplicated,partition=*,type=Partition

  • kafka.log:name=LogEndOffset,partition=*,type=Log

  • kafka.log:name=LogStartOffset,partition=*,type=Log

  • kafka.log:name=Size,partition=*,type=Log

  • kafka.server:name=BytesInPerSec,type=BrokerTopicMetrics

  • kafka.server:name=BytesOutPerSec,type=BrokerTopicMetrics

  • kafka.server:name=MessagesInPerSec,topic=*,type=BrokerTopicMetrics



▲图五 搜索某租户部分 SLO 指标结果


附录:


Kafka 监控相关脚本


https://github.com/cloud-op/monitor/tree/master/kafka


文章转载自微信公众号京东云。


2019-08-11 08:309952

评论

发布
暂无评论
发现更多内容

重磅升级!TDengine3.0正式发布

TDengine

数据库 tdengine 时序数据库

CSDN 加入星策开源社区,携手推动企业智能化转型建设

星策开源社区

企业转型 智能化 CSDN

XSKY星辰天合与观测云完成产品兼容性互认证 构建全业务链路的可观测性

观测云

火热与争议并行,XDR路在何方?

极盾科技

网络安全 安全 信息安全 数据安全 xdr

干货!XDR产品安全检测体系如何更好的落地?

极盾科技

网络安全 安全 信息安全 数据安全 xdr

谁在构建超云?

Kent Yao

超云

对话张星亮,洞察本质,SaaS首先是一种商业模式

B Impact

兆骑科创国内外创新创业服务平台,创业大赛,企业落地孵化

兆骑科创凤阁

洞见商业新机,云原生数据库GaussDB让企业决策更科学

华为云开发者联盟

数据库 后端 华为云

直播系统源码——重视哪些功能的开发?

开源直播系统源码

软件开发 直播系统源码 直播功能

兆骑科创创新创业大赛,双创活动,赛事承办,三招三引

兆骑科创凤阁

软件测试100天上岸1-测试就是找茬游戏

和牛

测试 8月月更

如何区分透明LED显示屏种类及应用领域

Dylan

LED显示屏 led显示屏厂家

容器化 | 一文搞定镜像构建方式选型

RadonDB

MySQL Docker Kubernetes 镜像 RadonDB

企业实践|基于软件研运一体化DevOps平台的应用解析

云智慧AIOps社区

DevOps 自动化 敏捷开发 研发管理 代码托管

点赞破百万!字节算法大佬亲撰30W字数据算法笔记:GitHub标星93K

小柴说Java

数据结构 算法 算法题 算法与数据结构 算法面试题

【Java】:程序流程的控制

翼同学

Java 学习 编程语言 分享 8月月更

Alibaba最新发布的Spring Boot项目实战文档,Github标星78k

Java面试那些事儿

Java Java 面试 java程序员 Java工程师 spring-boot

开源一夏 | 在STM32L051上使用RT-Thread (一、无线温湿度传感器 之 新建项目)

矜辰所致

开源 RT-Thread 8月月更 STM32L051

Linux C/C++后台开发高级架构师进阶指南-剑指腾讯T9

C++后台开发

后台开发 后端开发 linux开发 Linux服务器开发 C/C++开发

推荐 | 移动开发主流热更新技术

Speedoooo

小程序 APP开发 热更新

什么是知识库,为什么需要它?

Geek_da0866

从0到1打造推荐系统工程实战

Jay Wu

推荐系统

HUAWEI内网最新发布了一份452页网络协议手册,GitHb百万收藏

小柴说Java

Java 网络协议 java程序员 TCP/IP Java工程师

微信官方kbone,Web端同构的福音

Geek_99967b

小程序

极盾·析策,XDR的正确打开方式

极盾科技

网络安全 安全 数据安全 xdr

让GitHub炸锅的深入理解MySQL实战手册,竟出自阿里云“藏经阁”

冉然学Java

Java MySQL 高可用 阿里 构架

7 天找个 Go 工作,Gopher 要学的条件语句,循环语句 ,第3篇

梦想橡皮擦

Python 爬虫 8月月更

从GitHub火到了InfoQ!共计1658页的《Java岗面试核心MCA版》,拿走不谢

收到请回复

Java 程序员 金九银十 Java面试八股文 常见面试题

种草 Vue3 中几个好玩的插件和配置

江南一点雨

Java Vue

重磅发布!阿里云全链路数据湖开发治理解决方案

阿里云大数据AI技术

大数据 阿里云 数据湖 数据分析

你与Kafka监控进阶,只差一个“视角”的距离_软件工程_京东云应用研发部_InfoQ精选文章