写点什么

在 FIFA 20 将技能相似球员进行分组(1):K- 均值聚类

  • 2020-09-21
  • 本文字数:2011 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类

引言

足球(欧洲足球)从小就是我最喜欢的运动之一。过去无论我去哪里,都会随身带着足球,这样我就能最大限度地利用踢足球的机会。


我也喜欢玩电脑游戏《FIFA 足球世界》,我觉得,用机器学习来分析 FIFA 中的球员是一件很酷的事情。


在本教程中,我将使用 K-均值(K-Means)聚类算法在 FIFA 20 将技能相似的球员进行分组。

了解聚类

聚类(Clustering)是无监督学习技术的一种(另一种是主成分分析)。


我们可以将观测值聚类(或分组)到相同的子组中,使子组内的观测值彼此相当相似,而不同子组中的观测值彼此相当不同。



聚类示例。


上面的散点图显示了数据集中有三个不同的组。

了解 K-均值聚类算法

K-均值聚类算法是聚类算法中的一种。


基本算法如下:


  • 指定 K-聚类并初始化随机质心。

  • 进行迭代,直到聚类分配停止更改。该方法将每个观测值精确地分配到 K 个聚类中的一个。

  • 对于每个 K 聚类,计算聚类平均值。

  • 继续查看观测值列表,并将观测值分配给平均值最接近的聚类。


其目的是形成聚类,使同一聚类内的观测值尽可能相似。


K-均值聚类算法使用平方欧几里得距离计算相似度。

数据集

我们将使用 Kaggle 的 FIFA 20 数据集

特征工程

我们只会选择数值和每个球员的名字。


df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle', 'goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]
复制代码


我提取的是总成绩高于 86 分的球员,因为我们不想使用 18000 多名球员进行分组。


df = df[df.overall > 86] # extracting players with overall above 86
复制代码


将空值替换为平均值。


df = df.fillna(df.mean())
复制代码


归一化(标准化/缩放)数据。


  • 我们希望将数据进行归一化,因为变量是在不同尺度上测量的。


from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码


使用主成分分析将图中的 60 个维度减少到 2 个。


from sklearn.decomposition import PCApca = PCA(n_components = 2) # 2D PCA for the plotreduced = pd.DataFrame(pca.fit_transform(X_norm))
复制代码

执行 K-均值聚类

我们将指定有 5 个聚类。


from sklearn.cluster import KMeans# specify the number of clusterskmeans = KMeans(n_clusters=5)# fit the input datakmeans = kmeans.fit(reduced)# get the cluster labelslabels = kmeans.predict(reduced)# centroid valuescentroid = kmeans.cluster_centers_# cluster valuesclusters = kmeans.labels_.tolist()
复制代码


通过添加球员的名字和他们的聚类来创建一个新的数据帧。


reduced['cluster'] = clustersreduced['name'] = namesreduced.columns = ['x', 'y', 'cluster', 'name']reduced.head()
复制代码

K-均值聚类图的可视化

import matplotlib.pyplot as pltimport seaborn as sns%matplotlib inlinesns.set(style="white")ax = sns.lmplot(x="x", y="y", hue='cluster', data = reduced, legend=False,fit_reg=False, size = 15, scatter_kws={"s": 250})texts = []for x, y, s in zip(reduced.x, reduced.y, reduced.name):texts.append(plt.text(x, y, s))ax.set(ylim=(-2, 2))plt.tick_params(labelsize=15)plt.xlabel("PC 1", fontsize = 20)plt.ylabel("PC 2", fontsize = 20)plt.show()
复制代码



K-均值聚类


看看基于球员位置的聚类是如何形成的,是不是很酷!


我希望本教程对你有所启发,敬请关注下一篇教程!


作者介绍


Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-1-k-means-clustering-c4a845db78bc


2020-09-21 10:101297

评论

发布
暂无评论
发现更多内容

架构作业--大数据

Nick~毓

Mock | 拦截ajax的两种实现方式

梁龙先森

Java 大前端

某Javva程序员金秋9月靠这份文档涨薪10K,你把这份Java进阶文档吃透涨薪超简单!

Java架构之路

Java 程序员 架构 面试 编程语言

LeetCode题解:45. 跳跃游戏 II,贪心从后向前,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

测试右移之日志收集与监控

BY林子

敏捷 软件测试

密码学系列之:明文攻击和Bletchley Park

程序那些事

加密解密 密码学 程序那些事 明文攻击

生产环境全链路压测建设历程第四篇 技术体系的发力

数列科技杨德华

卧槽,牛皮了!某程序员苦刷这两份算法PDF47天,四面字节斩获心仪大厂offer!

Java架构之路

Java 程序员 架构 面试 编程语言

小熊派开发实践丨小熊派+合宙Cat.1接入云服务器

华为云开发者联盟

IoT 小熊派 实践

话题讨论 | 对于懂得编程的人来说,编程对你来说有什么乐趣?编程大概是什么感觉?

xcbeyond

话题讨论

Norns.Urd 中的一些设计

八苦-瞿昙

C# 随笔 随笔杂谈 aop

为什么删除数据后,Redis内存占用依然很高?

Java架构师迁哥

Java并发编程:进程、线程、并行与并发

李尚智

Java并发

4项探索+4项实践,带你了解华为云视觉预训练研发技术

华为云开发者联盟

AI 华为云 modelarts

华为工程师:扔掉你手里的其他Netty资料吧,有这份足以

小Q

Java 学习 面试 Netty 网络

Flutter技术在会展云中大显身手

京东科技开发者

flutter 跨平台 移动开发

摄像机不智能,基本等于不讲武德

脑极体

学习笔记3

Qx

Alibaba Java面试题大揭秘,把这些知识点吃透去面试成功率高达100%

Java架构之路

Java 程序员 架构 面试 编程语言

C++typename的由来和用法

良知犹存

c++

最值得Deepin的思维模型“组合创新” | 技术人应知的创新思维模型 (3)

Alan

创新 思维模型 28天写作

中国SaaS的病与痛?

ToB行业头条

LeetCode题解:102. 二叉树的层序遍历,BFS,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

如何使用 JuiceFS 在云上优化 Kylin 4.0 的存储性能?

苏锐

大数据 kylin 性能优化 JuiceFS

区块链技术生态持续优化,五大趋势不容忽视

CECBC

区块链 场景应用

Spock单元测试框架实战指南五 - void方法测试

Java老k

Java 单元测试 spock

话题讨论 | 聊聊那些年你重构过的代码?

xcbeyond

话题讨论

GO 训练营第 3 周总结

Glowry

区块链打破数字医疗桎梏,赢数据未来新生

CECBC

区块链 医疗

只谈链不谈币,区块链会发展成什么样的方向?

CECBC

区块链

话题讨论 | 说说那些"Oh my god"的时刻

Kurtis Moxley

话题讨论

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类_AI&大模型_Jaemin Lee_InfoQ精选文章