写点什么

在 FIFA 20 将技能相似球员进行分组(1):K- 均值聚类

  • 2020-09-21
  • 本文字数:2011 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类

引言

足球(欧洲足球)从小就是我最喜欢的运动之一。过去无论我去哪里,都会随身带着足球,这样我就能最大限度地利用踢足球的机会。


我也喜欢玩电脑游戏《FIFA 足球世界》,我觉得,用机器学习来分析 FIFA 中的球员是一件很酷的事情。


在本教程中,我将使用 K-均值(K-Means)聚类算法在 FIFA 20 将技能相似的球员进行分组。

了解聚类

聚类(Clustering)是无监督学习技术的一种(另一种是主成分分析)。


我们可以将观测值聚类(或分组)到相同的子组中,使子组内的观测值彼此相当相似,而不同子组中的观测值彼此相当不同。



聚类示例。


上面的散点图显示了数据集中有三个不同的组。

了解 K-均值聚类算法

K-均值聚类算法是聚类算法中的一种。


基本算法如下:


  • 指定 K-聚类并初始化随机质心。

  • 进行迭代,直到聚类分配停止更改。该方法将每个观测值精确地分配到 K 个聚类中的一个。

  • 对于每个 K 聚类,计算聚类平均值。

  • 继续查看观测值列表,并将观测值分配给平均值最接近的聚类。


其目的是形成聚类,使同一聚类内的观测值尽可能相似。


K-均值聚类算法使用平方欧几里得距离计算相似度。

数据集

我们将使用 Kaggle 的 FIFA 20 数据集

特征工程

我们只会选择数值和每个球员的名字。


df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle', 'goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]
复制代码


我提取的是总成绩高于 86 分的球员,因为我们不想使用 18000 多名球员进行分组。


df = df[df.overall > 86] # extracting players with overall above 86
复制代码


将空值替换为平均值。


df = df.fillna(df.mean())
复制代码


归一化(标准化/缩放)数据。


  • 我们希望将数据进行归一化,因为变量是在不同尺度上测量的。


from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码


使用主成分分析将图中的 60 个维度减少到 2 个。


from sklearn.decomposition import PCApca = PCA(n_components = 2) # 2D PCA for the plotreduced = pd.DataFrame(pca.fit_transform(X_norm))
复制代码

执行 K-均值聚类

我们将指定有 5 个聚类。


from sklearn.cluster import KMeans# specify the number of clusterskmeans = KMeans(n_clusters=5)# fit the input datakmeans = kmeans.fit(reduced)# get the cluster labelslabels = kmeans.predict(reduced)# centroid valuescentroid = kmeans.cluster_centers_# cluster valuesclusters = kmeans.labels_.tolist()
复制代码


通过添加球员的名字和他们的聚类来创建一个新的数据帧。


reduced['cluster'] = clustersreduced['name'] = namesreduced.columns = ['x', 'y', 'cluster', 'name']reduced.head()
复制代码

K-均值聚类图的可视化

import matplotlib.pyplot as pltimport seaborn as sns%matplotlib inlinesns.set(style="white")ax = sns.lmplot(x="x", y="y", hue='cluster', data = reduced, legend=False,fit_reg=False, size = 15, scatter_kws={"s": 250})texts = []for x, y, s in zip(reduced.x, reduced.y, reduced.name):texts.append(plt.text(x, y, s))ax.set(ylim=(-2, 2))plt.tick_params(labelsize=15)plt.xlabel("PC 1", fontsize = 20)plt.ylabel("PC 2", fontsize = 20)plt.show()
复制代码



K-均值聚类


看看基于球员位置的聚类是如何形成的,是不是很酷!


我希望本教程对你有所启发,敬请关注下一篇教程!


作者介绍


Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-1-k-means-clustering-c4a845db78bc


2020-09-21 10:101203

评论

发布
暂无评论
发现更多内容

SpringBoot+Redis基本操作,实现排行榜功能,javasql优化面试题

Java 程序员 后端

spring boot 整合Swagger2 构建API文档,linux学习路线图

Java 程序员 后端

Spring 使用Validation 验证框架的问题详解,springboot原理

Java 程序员 后端

Spring--JdbcTemplate基本使用,三年老Java经验面经

Java 程序员 后端

【LeetCode】提莫攻击Java题解

Albert

算法 LeetCode 11月日更

Spring Boot 实战(9) springboot 整合 JPA,2021必看

Java 程序员 后端

Spring Cloud入门-Consul服务注册发现与配置中心(Hoxton版本)

Java 程序员 后端

Spring Cloud:第四章:Hystrix断路器,mybatis面试常问问题

Java 程序员 后端

SpringBoot 实战:优雅的使用枚举参数(原理篇,这一次带你搞懂Spring代理创建过程

Java 程序员 后端

Spring cloud stream【入门介绍】,java开发实例大全云盘

Java 程序员 后端

Spring Cloud Gateway限流实战,万字详解微服务的哨兵机制

Java 程序员 后端

Spring MVC框架:第十二章:运行原理,腾讯Java面试题

Java 程序员 后端

Spring 全家桶,永远滴神,spring框架教程

Java 程序员 后端

spring-cloud-kubernetes的服务发现和轮询实战(含熔断)

Java 程序员 后端

Springboot 使用Quartz定时器执行多个定时任务 配置篇

Java 程序员 后端

springboot+Redis+Shiro,java编程技术高级八大类

Java 程序员 后端

Spring Boot核心技术之Rest映射以及源码的分析,java从入门到放弃

Java 程序员 后端

Spring Cloud Stream 编程模型的基础知识,很多老司机都不知道

Java 程序员 后端

SpringBoot + Vue 开发前后端分离的旅游管理系统,unixlinux编程实践教程

Java 程序员 后端

springboot+mybatis+druid整合笔记,java程序设计案例教程课后答案

Java 程序员 后端

Spring Boot 谷粒学院、谷粒商城项目问题汇总,tomcat面试题

Java 程序员 后端

Spring Cloud 分布式事务详解及LCN解决方案,mybatis底层原理

Java 程序员 后端

Spring-boot使用logback实现日志配置,java自学视频网站

Java 程序员 后端

SpringBoot+Redis基本操作,实现排行榜功能(1),springmvc教程下载

Java 程序员 后端

SpringBoot2----Web模块的基本注解,美的java面试题

Java 程序员 后端

【Flutter 专题】13 图解最基础的 http 请求方式

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 11月日更

Spring02:基本配置与依赖注入,贼好用的Java学习路线集合

Java 程序员 后端

Spring Cloud入门-Admin服务监控中心(Hoxton版本),java开发面试视频

Java 程序员 后端

Spring Retry不为人知的技巧,你知道几个?,java程序设计精编教程第三版答案耿祥义

Java 程序员 后端

Springboot 整合Shiro 轻量级权限框架,从数据库设计开始带你快速上手shiro

Java 程序员 后端

spring boot增删改查,javassm框架面试重点

Java 程序员 后端

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类_AI&大模型_Jaemin Lee_InfoQ精选文章