写点什么

京东:利用 DRL 算法进行带负反馈的商品推荐

  • 2019-11-29
  • 本文字数:1607 字

    阅读完需:约 5 分钟

京东:利用DRL算法进行带负反馈的商品推荐

背景与介绍

大都数传统的推荐系统(协同过滤、基于内容的推荐、learning-to-rank)只是将推荐过程当做一个静态的过程,并且在一段时间内是根据固定的模型来进行推荐。当用户的兴趣发生动态变化时,这些传统方法推荐的内容就不能捕捉到用户兴趣的实时变化。因此本文提出了一种 DRL 算法,可通过推荐系统和用户不断交互来持续提升推荐质量。


在电商领域,用户有正反馈和负反馈(比如用户点击了商品为正反馈,用户对商品没有任何操作称为负反馈),并且负反馈的数量远远大于正反馈。因此正反馈给模型带来的影响经常被负反馈给“冲刷”掉。本文提出的 deep recommender system(DEERS)的算法框架可将正、负反馈同时融入到模型中。


文中将了将 RL 引入到推荐系统中的两个优势:1. 通过用户与推荐系统的不断交互,可持续更新 try-and-error 策略,直到模型收敛到最优;2. 在当前状态动作对下,通过带延迟奖赏构造的 value 值可不断训练推荐模型。对于一个用户来讲,其最优的策略就是最大化该用户的期望累计奖赏。因此推荐系统通过很小的即时奖赏就可筛选出商品。

问题建模

环境:用户 agent:推荐系统


MDP 中各元素的定义为:


状态空间 S:用户之前的浏览历史,包括点击/购买过的和略过的,二者分开进行处理。同时,物品是按照先后顺序进行排序的。


动作空间 A:一次只给用户推荐一个物品,那么推荐的物品即动作。


即时奖励 R:在给用户推荐一个物品后,用户可以选择忽略、点击甚至购买该物品,根据用户的行为将给出不同的奖励。


状态转移概率 P:状态的转移主要根据推荐的物品和用户的反馈来决定的。


折扣因子 r:对未来收益进行一定的折扣


模型框架

基本的 DQN 模型,只考虑正向的反馈


状态 s: [公式],用户之前点击或购买过的 N 个物品同时按照时间先后进行排序


s 转移到 s’:假设当前的推荐物品 a,用户若点击或购买,则 [公式] ,若用户略过,则 s’=s 。


需要注意的是,仅仅使用离散的 indexes 去表示 items 是表达力不够的,比如相似的商品仅从 index 上也是无法推断的。一个常见的做法是,在表示 item 的时候加入额外的信息,比如 brand,price 和月销量等等。本文则是采用了另外一种方法,将用户的浏览历史当做一个 session 下的序列,然后通过 word embedding 技术去训练得到每个 item 的 embedding 表示(有点像 Airbnb 的做法)。



训练得到 item 的 embedding 之后,将状态和动作的 embedding 表示 concat 起来作为模型的输入,输出为该状态动作对的 Q 值。更新方法和传统的 DQN 是一样的。这里就不详细介绍了


  1. DEERS 模型,同时考虑正向和负向反馈


对于基本的 DQN 模型来说,一个明显的缺点是,当推荐的物品被用户忽略时,状态是不会发生变化的。因此 DEERS 模型在状态中也考虑被用户忽略过的商品。


当前状态 s: 当前状态 s 包含两部分 s=(s+,s-),其中 s+={i1,i2,…,iN},表示用户之前点击或购买过的 N 个物品,s-={j1,j2,…,jN},表示用户之前略过的 N 个物品。同时物品按照时间先后进行排序。


s 转移到 s’:假设当前的推荐物品 a,用户若点击或购买,则 s’+={i2,i3,…,iN,a},若用户略过,则 s’-={j2,j3,…,jN,a} 。那么,s’ = (s’+,s’-)。



如上图,DEERS 模型使用 GRU 来抽取 s+,s-两个序列的表征。


另外,DEERS 模型还考虑了商品之间的偏序关系。对于一个商品 a,偏序对中的另一个商品称为 [公式] ,但只有满足三个条件,才可以称为[公式]。首先,[公式]必须与 a 是同一类别的商品;其次,用户对于[公式]和 a 的反馈是不同的;最后,[公式]与 a 的推荐时间要相近。


若商品 a 能够找到有偏序关系的物品[公式] ,此时不仅需要预估的 Q 值和实际的 Q 值相近,同时也需要有偏序关系的两个物品的 Q 值差距越大越好,因此模型的损失函数变为:



其中,目标 Q 值 y 的计算为:



整个算法的流程为:



参考文献:


https://arxiv.org/pdf/1802.06501.pdf


https://www.jianshu.com/p/fae3736e0428


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/77224966


2019-11-29 11:402204

评论

发布
暂无评论
发现更多内容

重装亮相!9 月 22 日平凯数据库 - TiDB 企业版全解读等你来!

PingCAP

数据库 TiDB 平凯星辰 平凯数据库

好物周刊#2:AI 写作助手

村雨遥

软件 网站 项目 插件 资料

软件需求文档、设计文档、开发文档、运维文档大全

金陵老街

项目管理 #运维

项目流程管理处理推荐 OmniPlan Pro 4 最新激活中文

胖墩儿不胖y

Mac软件 项目流程管理

供应链和物流的跨链代币开发 数字货币开发

区块链软件开发推广运营

数字藏品开发 dapp开发 区块链开发 链游开发 NFT开发

乙烯裂解工艺可视化2D组态系统

2D3D前端可视化开发

物联网 组态软件 工业组态 乙烯裂解工艺 乙烯裂解组态图

在信创化的浪潮下,银行应该如何选择

Onegun

信创 信创生态

Puppeteer无头浏览器:开启自动化之门,掌握浏览器世界的无限可能

凌览

node.js puppeteer 截图

科兴未来 | 中国·仙居第六届全球医疗器械创业创新大赛

科兴未来News

您距离一个成熟安全的 DevOps 平台,只差一个迁移

极狐GitLab

DevOps gitlab 安全 迁移 Github'

华为云CodeArts Check代码检查服务用户声音反馈集锦(6)

软件开发 华为云 代码检查

openEuler 亮相全球顶级开源盛会 OSSUMMIT 2023,持续推动智能化未来的实现

openEuler

Linux 开源 openEuler 资讯

DAPP区块链公链代币智能合约质押挖矿系统开发

l8l259l3365

搜索技术领域的“奥林匹克”,飞桨支持“第二届百度搜索创新大赛”正式启动!

飞桨PaddlePaddle

百度 飞桨 AI Studio

强大硬件+优化软件,英特尔锐炫助力玩家沉浸畅享《猛兽派对》

E科讯

灞桥论“健” 共话康养 灞桥康养论坛取得圆满成功

联营汇聚

活动报名 | Modern Data Stack Meetup 北京首站启动!与三大开源社区共同探索现代数据栈的最佳实践

tapdata

数据采集 数据集成 Tapdata 现代数据栈 云数仓

数智赋能,提质增效 | 用友流程制造行业解决方案全新发布!

用友BIP

流程制造

openEuler与Linaro携手参加OSSUMMIT 2023

openEuler

Linux 开源 openEuler 资讯

最佳实践:TiDB 业务写变慢分析处理

PingCAP

数据库 最佳实践 TiDB

静态分析在DevSecOps中的应用

Tom(⊙o⊙)

集成开发环境软件Eclipse与MyEclipse区别

小齐写代码

企业诊断屋:二手车交易平台APP如何用AB测试赋能业务

字节跳动数据平台

大数据 ab测试 对比实验 数字化增长 企业号9月PK榜

亮相华为全联接大会,用友荣获“华为云技术领航最佳实践伙伴”奖项

用友BIP

华为云

喜讯!云起无垠获评软件供应链安全技能竞赛“团队优秀奖”

云起无垠

京东:利用DRL算法进行带负反馈的商品推荐_语言 & 开发_Alex-zhai_InfoQ精选文章