写点什么

Apache Crunch:用于简化 MapReduce 编程的 Java 库

  • 2013-03-18
  • 本文字数:2454 字

    阅读完需:约 8 分钟

Apache Crunch(孵化器项目)是基于 Google 的 FlumeJava 库编写的 Java 库,用于创建 MapReduce 流水线。与其他用来创建 MapReduce 作业的高层工具(如 Apache Hive、Apache Pig 和 Cascading 等)类似,Crunch 提供了用于实现如连接数据、执行聚合和排序记录等常见任务的模式库。而与其他工具不同的是,Crunch 并不强制所有输入遵循同一数据类型。相反,Crunch 使用了一种定制的类型系统,非常灵活,能够直接处理复杂数据类型,如时间序列、HDF5 文件、Apache HBase 表和序列化对象(像 protocol buffer 或 Avro 记录)等。

Crunch 并不想阻止开发者以 MapReduce 方式思考,而是尝试使之简化。尽管 MapReduce 有诸多优点,但对很多问题而言,并非正确的抽象级别:大部分有意思的计算都是由多个 MapReduce 作业组成的,情况往往是这样——出于性能考虑,我们需要将逻辑上独立的操作(如数据过滤、数据投影和数据变换)组合为一个物理上的 MapReduce 作业。

本质上,Crunch 设计为 MapReduce 之上的一个薄层,希望在不牺牲 MapReduce 力量(或者说不影响开发者使用 MapReduce API)的前提下,更容易在正确的抽象级别解决手头问题。

尽管 Crunch 会让人想起历史悠久的 Cascading API,但是它们各自的数据模型有很大不同:按照常识简单总结一下,可以认为把问题看做数据流的人会偏爱 Crunch 和 Pig,而考虑 SQL 风格连接的人会偏爱 Cascading 和 Hive。

Crunch 的理念

PCollection 和 PTable<K, V> 是 Crunch 的核心抽象,前者代表一个分布式、不可变的对象集合,后者是 Pcollection 的一个子接口,其中包含了处理键值对的额外方法。这两个核心类支持如下四个基本操作:

  1. parallelDo:将用户定义函数应用于给定 PCollection,返回一个新的 PCollection 作为结果。
  2. groupByKey:将一个 PTable 中的元素按照键值排序并分组(等同于 MapReduce 作业中的 shuffle 阶段)
  3. combineValues:执行一个关联操作来聚合来自 groupByKey 操作的值。
  4. union:将两个或多个 Pcollection 看做一个虚拟的 PCollection。

Crunch 的所有高阶操作(joins、cogroups 和 set operations 等)都是通过这些基本原语实现的。Crunch 的作业计划器(job planner)接收流水线开发者定义的操作图,将操作分解为一系列相关的 MapReduce 作业,然后在 Hadoop 集群上执行。Crunch 也支持内存执行引擎,可用于本地数据上流水线的测试与调试。

有些问题可以从能够操作定制数据类型的大量用户定义函数受益,而 Crunch 就是为这种问题设计的。Crunch 中的用户定义函数设计为轻量级的,为满足应用程序的需要,仍然提供了完整的访问底层 MapReduce API 的功能。Crunch 开发者也可以使用 Crunch 原语来定义 API,为客户提供涉及一系列复杂 MapReduce 作业的高级 ETL、机器学习和科学计算功能。

Crunch 起步

可以从 Crunch 的网站下载最新版本的源代码或二进制文件,或者使用在 Maven Central 发布的 dependencies

源代码中有很多示例应用。下面是 Crunch 中 WordCount 应用的源代码:

复制代码
import org.apache.crunch.DoFn;
import org.apache.crunch.Emitter;
import org.apache.crunch.PCollection;
import org.apache.crunch.PTable;
import org.apache.crunch.Pair;
import org.apache.crunch.Pipeline;
import org.apache.crunch.impl.mr.MRPipeline;
import org.apache.crunch.type.writable.Writables;
public class WordCount {
public static void main(String[] args) throws Exception {
// Create an object to coordinate pipeline creation and execution.
Pipeline pipeline = new MRPipeline(WordCount.class);
// Reference a given text file as a collection of Strings.
PCollection<String> lines = pipeline.readTextFile(args[0]);
// Define a function that splits each line in a PCollection of Strings into a
// PCollection made up of the individual words in the file.
PCollection<String> words = lines.parallelDo(new DoFn<String, String>() {
public void process(String line, Emitter<String> emitter) {
for (String word : line.split("\\s+")) {
  emitter.emit(word);
}
}
}, Writables.strings()); // Indicates the serialization format
// The count method applies a series of Crunch primitives and returns
// a map of the top 20 unique words in the input PCollection to their counts.
// We then read the results of the MapReduce jobs that performed the
// computations into the client and write them to stdout.
for (Pair<String, Long> wordCount : words.count().top(20).materialize()) {
System.out.println(wordCount);
}
}
}

Crunch 优化方案

Crunch 优化器的目标是尽可能减少运行的 MapReduce 作业数。大多数 MapReduce 作业都是 IO 密集型的,因此访问数据的次数越少越好。公平地说,每种优化器(Hive、Pig、Cascading 和 Crunch)的工作方式本质上是相同的。但与其他框架不同的是,Crunch 把优化器原语暴露给了客户开发人员,对于像构造 ETL 流水线或构建并评估一组随机森林模型这样的任务而言,构造可复用的高阶操作更容易。

结论

Crunch 目前仍处于 Apache 的孵化器阶段,我们非常欢迎社区贡献(参见项目主页)让这个库更好。特别的是,我们正在寻求更高效的MapReduce 编译思想(包括基于成本考虑的优化)、新的MapReduce 设计模式,还希望支持更多的数据源和目标,如HCatalog、Solr 和ElasticSearch 等。还有很多把Crunch 带向如 Scala Clojure 等其他 JVM 语言的项目,也有很多使用 Crunch以R 语言来创建MapReduce 流水线的工具。

关于作者

Josh Wills 是 Cloudera 的数据科学主管,主要负责与客户和工程师一起基于 Hadoop 为不同行业开发解决方案。他从杜克大学获得数学专业学士学位,又从得克萨斯大学奥斯汀分校获得运筹学专业硕士学位。

查看英文原文: Apache Crunch: A Java Library for Easier MapReduce Programming

2013-03-18 17:068627
用户头像
臧秀涛 略懂技术的运营同学。

发布了 300 篇内容, 共 136.9 次阅读, 收获喜欢 35 次。

关注

评论

发布
暂无评论
发现更多内容

数字化工厂MES/MOM一体化解决方案PPT

工赋开发者社区

一个基于.NET Core构建的简单、跨平台、模块化的商城系统

不在线第一只蜗牛

小程序 .net core

JavaScript混淆工具选择与使用指南

网站首屏优化 | 提升首屏的几个简单手段

观测云

性能优化 前端

AI足球教练上岗利物浦,射门机会提高13%!来自DeepMind,网友:这不公平

Openlab_cosmoplat

AI

达芬奇DaVinci Resolve Studio 18 for Mac 系统调色视频软件

iMac小白

【教程】JavaScript代码混淆及优化

雪奈椰子

数据安全之路:Databend 用户策略指南

Databend

自定义Elasticsearch索引模式:优化数据存储结构以提高检索效率

测吧(北京)科技有限公司

测试

Alpha律所管理系统,助力律师团队管理提效再升级

科技汇

如何利用ChatGPT进行翻译--通用翻译篇

三七互娱后端技术团队

AI翻译

为什么Solana在区块链生态系统中脱颖而出

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

聊聊多模态大模型处理的思考

EquatorCoco

多模态 大模型

如何利用ChatGPT进行翻译--精准翻译篇

三七互娱后端技术团队

AI翻译

AlphaGPT在法律大模型圈子火了,案件仅需3分钟搞定

科技汇

大模型+医疗,优质数据助力新生态建立

澳鹏Appen

数据标注 大模型 医疗大模型

【FAQ】HarmonyOS SDK 闭源开放能力 —IAP Kit

HarmonyOS SDK

HarmonyOS

一口气搞懂分库分表 12 种分片算法,大厂都在用

EquatorCoco

算法 分库分表

聊聊低代码产品的应用场景

互联网工科生

如何提升买家对独立站的信任感?提升转化率的技巧

技术冰糖葫芦

API 接口 API 文档

左手医生:医疗 AI 企业的云原生提效降本之路

阿里巴巴云原生

阿里云 容器 云原生

云原生最佳实践系列 4:基于 MSE 和 SAE 的微服务部署与压测

阿里巴巴云原生

阿里云 微服务 云原生

RocketMQ 流数据库解析:如何实现一体化流处理?

阿里巴巴云原生

阿里云 RocketMQ 云原生

深入了解 Docker Compose:简化容器化应用部署的利器

霍格沃兹测试开发学社

JetBrains CLion 2023 for Mac 完美激活 好用的c语言软件

iMac小白

浅谈开放词汇目标检测

inBuilder低代码平台

目标检测

掌握ADB:详解操作命令及完整用法指南

霍格沃兹测试开发学社

数据要素×工业制造:500强大型制造集团携手奇点云,以数据为经营管理提效

奇点云

数字化 奇点云 数据要素 工业制造

【FAQ】HarmonyOS SDK 闭源开放能力 —Scan Kit

HarmonyOS SDK

HarmonyOS

大模型落地实战指南:从选择到训练,深度解析显卡选型、模型训练技、模型选择巧及AI未来展望—打造AI应用新篇章

快乐非自愿限量之名

人工智能 AI大模型 大模型

聚道云助力:易快报CDP无缝对接,登录同步一步到位!

聚道云软件连接器

案例分享

Apache Crunch:用于简化MapReduce编程的Java库_语言 & 开发_Josh Wills_InfoQ精选文章