写点什么

MXNet API 入门 —第 6 篇

  • 2017-07-23
  • 本文字数:2568 字

    阅读完需:约 8 分钟

第5 篇文章中,我们使用三种预训练模型进行物体检测,并通过一些图片对他们的效果进行了对比。

在这一过程中发现这些模型有着截然不同的内存需求,最“节省”的Inception v3“只”需要43MB 内存。那这就提出了另一个问题:“能否在某些非常小型的设备,例如树莓派上运行这些模型?”嗯,一起试试吧!

在树莓派上构建MXNet

目前已经有了官方教程,但我发现其中缺少一些关键步骤,因此我也写了一版。该教程在运行最新版Raspbian 的Raspberry Pi 3 上可以完美运行。

复制代码
$ uname -a
Linux raspberrypi 4.4.50-v7+ #970 SMP Mon Feb 20 19:18:29 GMT 2017 armv7l GNU/Linux

首先需要添加所有必要的依赖项

复制代码
$ sudo apt-get update
$ sudo apt-get -y install git cmake build-essential g++-4.8 c++-4.8 liblapack*
libblas* libopencv* python-opencv libssl-dev screen

随后需要克隆 **MXNet 代码库并签出 ** 最新的稳定版本。最后一步不能省略,因为我发现大部分时候 HEAD 都是损坏的(2017 年 4 月 30 日更新:MXNet 开发团队联系了我,他们说持续集成现已就位,我也确认了 HEAD 已经可以成功构建。做的好!)。

复制代码
$ git clone https://github.com/dmlc/mxnet.git --recursive
$ cd mxnet
# List tags: v0.9.3a is the latest at the time of writing
$ git tag -l
$ git checkout tags/v0.9.3a

MXNet 可以通过 S3 加载和存储数据,因此有必要启用该功能,这样后面的操作可以更简单些。MXNet 还支持 HDFS,但需要在本地安装 Hadoop,所以还是算了吧…… :)

这样就可以直接运行 make 了,但考虑到树莓派有限的处理能力,构建过程会需要很长时间:你肯定不希望由于 SSH 会话超时打断构建过程!可以使用 Screen 解决这个问题。

为了尽可能加快速度,我们可以用(总共四个内核中的)两个内核并行运行一个 make。不建议使用更多内核,我自己这样尝试时树莓派停止响应了。

复制代码
$ export USE_S3=1
$ screen make -j2

整个过程需要大约一小时。最后一步需要安装库文件及其 Python 绑定。

复制代码
$ cd python
$ sudo python setup.py install
$ python
Python 2.7.9 (default, Sep 17 2016, 20:26:04)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
>>> mx.__version__
'0.9.3a'

加载模型

将模型文件复制到树莓派之后,还需要确保可以实际加载这些模型。此时可以使用第5 篇文章中用到的代码。另外需要提醒的是,CLI 模式下的树莓派有大约580MB 可用内存,所有数据可存储在一张32GB 的SD 卡中。

试试看加载VGG16。

复制代码
>>> vgg16,categories = init("vgg16")
terminate called after throwing an instance of 'std::bad_alloc'
what(): std::bad_alloc

糟糕!VGG16太大,内存装不下。那就试试 ResNet-152。

复制代码
>>> resnet152,categories = init("resnet-152")
Loaded in 11056.10 microseconds
>> print predict("kreator.jpg",resnet152,categories,5)
Predicted in 7.98 microseconds
[(0.87835813, 'n04296562 stage'), (0.045634001, 'n03759954 microphone, mike'),
(0.035906471, 'n03272010 electric guitar'), (0.021166906, 'n04286575 spotlight, spot'),
(0.0054096784, 'n02676566 acoustic guitar')]

ResNet-152 只用了大约 10 秒就成功加载,预测工作可在不到 10 微秒内完成。接着再试试 Inception v3。

复制代码
>>> inceptionv3,categories = init("Inception-BN")
Loaded in 2137.62 microseconds
>> print predict("kreator.jpg",resnet152,categories,5)
Predicted in 2.35 microseconds
[(0.4685601, 'n04296562 stage'), (0.40474886, 'n03272010 electric guitar'),
(0.073685646, 'n04456115 torch'), (0.011639798, 'n03250847 drumstick'),
(0.011014056, 'n02676566 acoustic guitar')]

在树莓派这种资源有限的设备上,模型之间的差异就更明显了!Inception v3 加载速度快很多,可在不到 1 毫秒内完成预测。就算成功加载该模型之后,树莓派依然有大量可用内存可用于运行其他程序,因此它非常适合某些嵌入式应用。我们接着继续 :)

使用树莓派的摄像头拍摄图片

我们可以给树莓派添加各种外设,其中最有趣的可能就是摄像头模块。用法也很简单!

复制代码
>>> inceptionv3,categories = init("Inception-BN")
>>> import picamera
>>> camera = picamera.PiCamera()
>>> filename = '/home/pi/cap.jpg'
>>> print predict(filename, inceptionv3, categories, 5)

这里有个例子。

复制代码
Predicted in 12.90 microseconds
[(0.95071173, 'n04074963 remote control, remote'), (0.013508897, 'n04372370 switch,
electric switch, electrical switch'), (0.013224524, 'n03602883 joystick'), (0.00399205,
'n04009552 projector'), (0.0036674738, 'n03777754 modem')]

很酷吧!

增加各类 Amazon AI 服务,反正完全可行!

我还试着通过之前写的 Python 脚本(文章代码)使用 Amazon Rekognition 对同一张图片进行了识别。

复制代码
$ ./rekognitionDetect.py jsimon-public cap.jpg copy
Label Remote Control, confidence: 94.7508468628

Rekognition 的效果也不错。接下来,如果能让树莓派用声音告诉我们图片的内容,是不是感觉更酷了!几步简单操作即可将 Amazon Polly 加入我们的环境(文章)。

Amazon Rekognition 和 Amazon Polly 都是基于深度学习技术的托管服务。用户无需自行考虑模型或基础架构本身,只需要调用 API 即可。

下面这个视频演示了我通过树莓派用 MXNet 中运行的 Inception v3 模型进行实时物体检测,并通过 Amazon Polly 描述识别结果的过程。

Youtube 介绍视频: https://youtu.be/eKGYFfr9MKI

这一系列 6 篇文章,我们真是取得了不错的进展,我们已经了解了如何:

  • 使用 NDArray 管理数据,
  • 使用 Symbol 定义模型,
  • 使用 Module 运行预测,
  • 加载并对比用于物体检测的预训练模型,
  • 在树莓派上实时运行预训练模型。

这一系列文章主要侧重于通过卷积神经网络进行的物体识别,其实 MXNet 的能力远不止于此,以后有机会再说吧。

本系列内容全部完结。希望你喜欢并能有所收获。

作者 Julien Simon 阅读英文原文 An introduction to the MXNet API?—?part 6


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-07-23 17:032233
用户头像

发布了 283 篇内容, 共 106.1 次阅读, 收获喜欢 62 次。

关注

评论

发布
暂无评论
发现更多内容

基于数字孪生技术的船舶智能机舱

Openlab_cosmoplat

开源社区 数字孪生 智能制造

量化合约对冲交易软件|合约一键跟单社区平台系统开发源码

开发微hkkf5566

低内存、高性能,磁盘索引可以这样玩

Zilliz

非结构化数据 Milvus 向量数据库

头部险企如何打造低代码数据集市,快速构建指标体系

Kyligence

金融科技 指标体系

类似钉钉和企微的企业IM,为什么说私有化部署是企业更好的选择?

WorkPlus

触控板手势增强软件:Multitouch激活版

真大的脸盆

Mac Mac 软件 触控板 触控板增强

沐曦与百度飞桨完成兼容性测试,助力计算机视觉应用发展

飞桨PaddlePaddle

分片压缩、分片上传,融云 IM 视频文件高速传输方案

融云 RongCloud

视频 IM 方案

基于PaddleOCR的多视角集装箱箱号检测识别

汀丶人工智能

人工智能 计算机视觉 图像识别 OCR识别

RabbitMq 环境搭建

流火

行云洞见 | 为何都在将研发环境搬上云端?

行云创新

云端IDE 云原生集成开发环境

快速解决 Linux 内核问题,一站式运维工具 oc-ops 介绍

OpenCloudOS

Linux 开源 操作系统

初学React useEffect Hook

devpoint

React useEffect

【被夸爆的教学!】ChatGPT注册全攻略!新手必看!省时省力又省心!

frank

ChatGPT

低代码引擎动作编排

codebee

低代码

老马闲评数字化【4】做数字化会不会被供应商拿捏住

行云创新

云原生 数字化转型 企业数字化

地表最强AI,GPT-4专治各种不服

引迈信息

AI ChatGPT

CCF BDCI“大数据平台安全事件检测与分类识别”赛题,奇点云夺冠

奇点云

数据安全 奇点云 个人信息保护

数字孪生的安全挑战和机遇

Openlab_cosmoplat

开源社区 数字孪生

专业、简单、稳定,融云重新定义互联网通信云服务

融云 RongCloud

互联网 数字化 办公 泛娱乐 通讯

WorkPlus SE专业版即时通讯IM办公平台,赋能中小企业数字化转型

WorkPlus

强烈推荐!阿里架构师纯手写的大型分布式项目《凤凰架构》手册

开心学Java

分布式 分布式系统 java 构架

JVM 堆体系结构及其内存调优

做梦都在改BUG

Java JVM

StyleGAN 调整面部表情,让虚拟人脸更生动

极客飞兔

人工智能 机器学习 图像处理 StyleGAN

小度沈健:以闭环服务赋能场景化智能家居

Geek_2d6073

火山引擎EMR StarRocks场景案例分享

字节跳动数据平台

EMR

4月7日|《2022中国企业敏捷实践白皮书》发布会,揭秘国内敏捷最新现状

爱吃小舅的鱼

敏捷实践 中国企业敏捷实践白皮书

2022 年云原生安全现状报告

York

容器 云原生 安全

科技+卫生=智慧公厕,城市焕然一新!

光明源智慧厕所

智慧城市

Redis连接失败问题排查和解决

做梦都在改BUG

MXNet API入门 —第6篇_语言 & 开发_Julien Simon_InfoQ精选文章