HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

MXNet API 入门 —第 3 篇

  • 2017-07-13
  • 本文字数:4703 字

    阅读完需:约 15 分钟

第2 篇文章中,我们介绍了如何使用Symbols 定义计算中使用的Graph,并处理存储在NDArray(在第1 篇文章中有介绍)中的数据。

本文将介绍如何使用Symbol 和NDArray 准备所需数据并构建神经网络。随后将使用 Module API 训练该网络并预测结果。

定义数据集

我们(设想中的)数据集包含1000 个数据样本

  • 每个样本有100 个特征
  • 每个特征体现为一个介于 0 和 1 之间的浮点值
  • 样本被分为10 个类别,我们将使用神经网络预测特定样本的恰当类别,
  • 我们将使用 800 个样本进行训练,使用 200 个样本进行验证
  • 训练和验证过程的批大小为 10。
复制代码
import mxnet as mx
import numpy as np
import logging
logging.basicConfig(level=logging.INFO)
sample_count = 1000
train_count = 800
valid_count = sample_count - train_count
feature_count = 100
category_count = 10
batch=10

生成数据集

我们将通过均匀分布的方式生成这 1000 个样本,将其存储在一个名为“X”的 NDArray 中:1000 行,100 列

复制代码
X = mx.nd.uniform(low=0, high=1, shape=(sample_count,feature_count))
>>> X.shape
(1000L, 100L)
>>> X.asnumpy()
array([[ 0.70029777, 0.28444085, 0.46263582, ..., 0.73365158,
0.99670047, 0.5961988 ],
[ 0.34659418, 0.82824177, 0.72929877, ..., 0.56012964,
0.32261589, 0.35627609],
[ 0.10939316, 0.02995235, 0.97597599, ..., 0.20194994,
0.9266268 , 0.25102937],
...,
[ 0.69691515, 0.52568913, 0.21130568, ..., 0.42498392,
0.80869114, 0.23635457],
[ 0.3562004 , 0.5794751 , 0.38135922, ..., 0.6336484 ,
0.26392782, 0.30010447],
[ 0.40369365, 0.89351988, 0.88817406, ..., 0.13799617,
0.40905532, 0.05180593]], dtype=float32)

这 1000 个样本的类别用介于 0-9 的整数来代表,类别是随机生成的,存储在一个名为“Y”的 NDArray 中。

复制代码
Y = mx.nd.empty((sample_count,))
for i in range(0,sample_count-1):
Y[i] = np.random.randint(0,category_count)
>>> Y.shape
(1000L,)
>>> Y[0:10].asnumpy()
array([ 3., 3., 1., 9., 4., 7., 3., 5., 2., 2.], dtype=float32)

拆分数据集

随后我们将针对训练验证两个用途对数据集进行80/20拆分。为此需要使用 NDArray.crop 函数。在这里,数据集是完全随机的,因此可以使用前 80% 的数据进行训练,用后 20% 的数据进行验证。实际运用中,我们可能需要首先搅乱数据集,这样才能避免按顺序生成的数据可能造成的偏差。

复制代码
X_train = mx.nd.crop(X, begin=(0,0), end=(train_count,feature_count-1))
X_valid = mx.nd.crop(X, begin=(train_count,0), end=(sample_count,feature_count-1))
Y_train = Y[0:train_count]
Y_valid = Y[train_count:sample_count]

至此数据已经准备完毕!

构建网络

这个网络其实很简单,一起看看其中的每一层:

  • 输入层是由一个名为“Data”的 Symbol 代表的,随后会绑定至实际的输入数据。 ```

    data = mx.sym.Variable(‘data’)

复制代码
- fc1 是 ** 第一个隐藏层 **,通过 **64 个相互连接的神经元 ** 构建而来,输入层的每个特征都会连接至所有的 64 个神经元。如你所见,我们使用了高级的 Symbol.FullyConnected 函数,相比手工建立每个连接,这种做法更方便一些! ```
fc1 = mx.sym.FullyConnected(data, name='fc1', num_hidden=64)
  • fc1 的每个输出会进入到一个激活函数 (Activation function) 。在这里我们将使用一个线性整流单元 (Rectified linear unit) ,即“Relu”。之前承诺过尽量少讲理论知识,因此可以这样理解:激活函数将用于决定是否要“启动”某个神经元,例如其输入是否由足够有意义,可以预测出正确的结果。 ```

    relu1 = mx.sym.Activation(fc1, name=‘relu1’, act_type=“relu”)

复制代码
- fc2 是 ** 第二个隐藏层 **,由 **10 个相互连接的神经元 ** 构建而来,可映射至我们的 **10 个分类 **。每个神经元可输出一个任意标度 (Arbitrary scale) 的浮点值。10 个值中最大的那个代表了数据样本 ** 最有可能的类别 **。 ```
fc2 = mx.sym.FullyConnected(relu1, name='fc2', num_hidden=category_count)
  • 输出层会将 Softmax 函数应用给来自 fc2 层的 10 个值:这些值会被转换为 10 个介于 0 和 1 之间的值,所有值的总和为 1。每个值代表预测出的每个类别的可能性,其中最大的值代表最有可能的类别。 ```

    out = mx.sym.SoftmaxOutput(fc2, name=‘softmax’)
    mod = mx.mod.Module(out)

复制代码
## 构建数据迭代器
在第 1 篇文章中,我们了解到神经网络并不会一次只训练一个样本,因为这样做从性能的角度来看效率太低。因此我们会使用 ** 批 **,即 ** 一批固定数量的样本 **
为了给神经网络提供这样的“批”,我们需要使用 NDArrayIter 函数构建一个 ** 迭代器 **。其参数包括 ** 训练数据 **、分类(MXNet 将其称之为 ** 标签 (Label)**),以及 ** 批大小 **
如你所见,我们可以对整个数据集进行迭代,同时对 10 个样本和 10 个标签执行该操作。随后即可调用 reset() 函数将迭代器恢复为初始状态。

train_iter = mx.io.NDArrayIter(data=X_train,label=Y_train,batch_size=batch)

for batch in train_iter:
… print batch.data
… print batch.label

[<NDArray 10x99 @cpu(0)>]
[<NDArray 10 @cpu(0)>]
[<NDArray 10x99 @cpu(0)>]
[<NDArray 10 @cpu(0)>]
[<NDArray 10x99 @cpu(0)>]
[<NDArray 10 @cpu(0)>]

train_iter.reset()

复制代码
网络已经准备完成,开始训练吧!
## 训练模型
首先将输入 Symbol\*\* 绑定\*\* 至实际的数据集(样本和标签),这时候就会用到迭代器。

mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label)

复制代码
随后对网络中的神经元权重进行 ** 初始化 **。这个步骤非常重要:使用“恰当”的技术对齐进行初始化可以帮助网络 ** 更快速地 ** 学习。此时可用的技术很多,Xavier 初始化器(名称源自该技术的发明人 Xavier Glorot?—?[PDF](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf))就是其中之一。

Allowed, but not efficient

mod.init_params()

Much better

mod.init_params(initializer=mx.init.Xavier(magnitude=2.))

复制代码
接着需要定义 ** 优化 ** 参数:
- 我们将使用 [随机坡降法 (Stochastic Gradient Descent)](https://en.wikipedia.org/wiki/Stochastic_gradient_descent) 算法(又名 SGD),该算法在机器学习和深度学习领域有着广泛的应用。
- 我们会将 ** 学习速率 ** 设置为 0.1,这是 SGD 算法一个非常普遍的设置。

mod.init_optimizer(optimizer=‘sgd’, optimizer_params=((‘learning_rate’, 0.1), ))

复制代码
最后,终于可以开始训练网络了!我们会执行 50 个 ** 回合 (Epoch)** 的训练,也就是说,整个数据集需要在这个网络中(以 10 个样本为一批)运行 50 次。

mod.fit(train_iter, num_epoch=50)
INFO:root:Epoch[0] Train-accuracy=0.097500
INFO:root:Epoch[0] Time cost=0.085
INFO:root:Epoch[1] Train-accuracy=0.122500
INFO:root:Epoch[1] Time cost=0.074
INFO:root:Epoch[2] Train-accuracy=0.153750
INFO:root:Epoch[2] Time cost=0.087
INFO:root:Epoch[3] Train-accuracy=0.162500
INFO:root:Epoch[3] Time cost=0.082
INFO:root:Epoch[4] Train-accuracy=0.192500
INFO:root:Epoch[4] Time cost=0.094
INFO:root:Epoch[5] Train-accuracy=0.210000
INFO:root:Epoch[5] Time cost=0.108
INFO:root:Epoch[6] Train-accuracy=0.222500
INFO:root:Epoch[6] Time cost=0.104
INFO:root:Epoch[7] Train-accuracy=0.243750
INFO:root:Epoch[7] Time cost=0.110
INFO:root:Epoch[8] Train-accuracy=0.263750
INFO:root:Epoch[8] Time cost=0.101
INFO:root:Epoch[9] Train-accuracy=0.286250
INFO:root:Epoch[9] Time cost=0.097
INFO:root:Epoch[10] Train-accuracy=0.306250
INFO:root:Epoch[10] Time cost=0.100

INFO:root:Epoch[20] Train-accuracy=0.507500

INFO:root:Epoch[30] Train-accuracy=0.718750

INFO:root:Epoch[40] Train-accuracy=0.923750

INFO:root:Epoch[50] Train-accuracy=0.998750
INFO:root:Epoch[50] Time cost=0.077

复制代码
如你所见,训练的准确度有了飞速提升,50 个回合后已经接近 **99% 以上 **。似乎我们的网络已经从训练数据集中学成了。非常惊人!
但针对验证数据集执行的效果如何呢?
## 验证模型
随后将新的数据样本放入网络,例如剩下的那 20%** 尚未 ** 在训练中使用过的数据。
首先构建一个迭代器,这一次将使用 ** 验证 ** 样本和标签。

pred_iter = mx.io.NDArrayIter(data=X_valid,label=Y_valid, batch_size=batch)

复制代码
随后要使用 Module.iter\_predict() 函数,借此让样本在网络中运行。这样做的同时,还需要对 ** 预测的标签 **** 实际标签 ** 进行对比。我们需要追踪比分并显示 ** 验证准确度 **,即,网络针对验证数据集的执行效果到底如何。

pred_count = valid_count
correct_preds = total_correct_preds = 0
for preds, i_batch, batch in mod.iter_predict(pred_iter):
label = batch.label[0].asnumpy().astype(int)
pred_label = preds[0].asnumpy().argmax(axis=1)
correct_preds = np.sum(pred_label==label)
total_correct_preds = total_correct_preds + correct_preds
print(‘Validation accuracy: %2.2f’ % (1.0*total_correct_preds/pred_count))

复制代码
这个过程中发生了不少事 :)
iter\_predict() 返回了:
{1}
- i\_batch:批编号。
- batch:一个 NDArray 数组。这里它其实保存了一个 NDArray,其中存储了当前批的内容。我们将用它找出当前批中 10 个数据样本的标签,随后将其存储在名为 Label 的 Numpy array 中(10 个元素)。
- preds:也是一个 NDArray 数组。这里它保存了一个 NDArray,其中存储了当前批预测出的标签:对于每个样本,我们提供了 ** 所有 10 个分类预测出的可能性 **(10x10 矩阵)。因此我们将使用 argmax() 找出最高值的 ** 指数 **,即 ** 最可能的分类 **。所以 pred\_label 实际上是一个 10 元素数组,其中保存了当前批中每个数据样本预测出的分类。
{1}
随后我们需要使用 Numpy.sum() 将 label 和 pred\_label 中相等值的数量进行对比。
最后需要计算并显示验证准确度。
> 验证准确度:0.09
什么?只有 9%?** 真是太悲催了 **!如果你希望证明我们的数据集真的是随机的,那么你有证据了!
底线在于,我们确实可以通过训练神经网络学习 ** 任何东西 **,但如果数据本身是 ** 无意义的 **(例如我们本例中使用的数据),那么就什么都预测不出来。** 种瓜得瓜,种豆得豆 **
如果你已经读到这里,我猜你是真心希望看到本例的完整代码 ;) 请花些时间用你自己的数据进行验证,这才是学习的最佳方法。
代码已发布至 GitHub:[mxnet\_example1.py](https://gist.github.com/juliensimon/7cfef0423b0183e891774a289e156b49#file-mxnet_example1-py)。
## 后续内容:
- 第 4 篇:使用预训练模型进行图片分类(Inception v3)
- 第 5 篇:进一步了解预训练模型(VGG16 和 ResNet-152)
- 第 6 篇:通过树莓派进行实时物体检测(并让它讲话!)
** 作者 **:[Julien Simon](https://medium.com/@julsimon),** 阅读英文原文 **:[An introduction to the MXNet API?—?part 3](https://medium.com/@julsimon/an-introduction-to-the-mxnet-api-part-3-1803112ba3a8)
- - - - - -
感谢 [杜小芳](http://www.infoq.com/cn/author/%E6%9D%9C%E5%B0%8F%E8%8A%B3) 对本文的审校。
给 InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 [editors@cn.infoq.com](mailto:editors@cn.infoq.com)。也欢迎大家通过新浪微博([@InfoQ](http://www.weibo.com/infoqchina),[@丁晓昀](http://weibo.com/u/1451714913)),微信(微信号:[InfoQChina](http://www.geekbang.org/ivtw))关注我们。
2017-07-13 17:393974
用户头像

发布了 283 篇内容, 共 106.6 次阅读, 收获喜欢 62 次。

关注

评论

发布
暂无评论
发现更多内容

阶跃星辰启动「繁星计划」开放平台;运动迁移框架 MotionClone 无需训练,一键克隆视频运动丨 RTE 开发者日报

声网

直播预约丨《指标体系建设实战》第四期:如何构建全面的指标管理体系

袋鼠云数栈

大数据 指标体系 指标管理 指标中台 指标建设

22 位委员参会,第 25 次龙蜥社区运营委员会圆满结束

OpenAnolis小助手

操作系统 龙蜥社区

企业全历史行为数据助ToB企业决策层开启营销的上帝视角

客户在哪儿AI

ToB营销 ToB增长 ToB销售

【YashanDB知识库】字段加上索引后,SQL查询不到结果

YashanDB

yashandb 崖山数据库 崖山DB

Web 开发者必备:最推荐的工具清单

Liam

程序员 前端 Web

【YashanDB知识库】存储过程报错snapshot too old

YashanDB

yashandb 崖山数据库 崖山DB

数据可视化在石油新能源行业的应用:深度探索与前沿趋势

不在线第一只蜗牛

数据挖掘 数据分析 低代码 数据可视化

软件测试学习笔记丨Cookie处理

测试人

软件测试

Cloud Kernel SIG 月度动态:发布 ANCK 3 个版本,5.10 kABI/kAPI 策略变更

OpenAnolis小助手

操作系统 龙蜥社区 龙蜥社区SIG Cloud Kernel

高性能网络SIG月度动态:virtio技术委员会通过flow director提案,netdim调节特性正式合入上游社区

OpenAnolis小助手

操作系统 龙蜥社区 龙蜥社区SIG

ISP代理与住宅代理的主要区别

IPIDEA全球HTTP

技术 ISP 代理IP

苏州八大行业服务器托管方案分享?IDC机房选择经验

苏州服务器托管

算力 IDC 服务器托管

2024中国PMO高峰论坛在京成功召开

财见

破局移动影像,华为的化境是绝无止境

脑极体

AI

高性能存储 SIG 月度动态:优化 xfs dax reflink 时延,独立选型并维护 mdadm 和 ledmon

OpenAnolis小助手

操作系统 高性能存储 龙蜥社区SIG

数字化转型赋能绿色发展:深入探索与实践

快乐非自愿限量之名

低代码 数字化 绿色转型

拼多多商品详情数据接口全解析:获取商品信息的高效途径

tbapi

拼多多 拼多多商品详情数据接口 拼多多API 拼多多商品数据采集

线上观看 3 万+!「智能可观测运维技术MeetUp」精彩回顾,探讨智能体构建新方向

OpenAnolis小助手

操作系统 龙蜥社区 龙蜥meetup 可观测技术

说说RabbitMQ延迟队列实现原理?

王磊

Java 面试

怎么填充PPT底色?分享2个办公必备的PPT技巧!

彭宏豪95

职场 PPT PPT模板 办公软件 AI生成PPT

从IDC数据中心到云再到智算中心,苏州IDC决胜算力新时代

苏州服务器托管

数据中心

Databend 完美适配 KubeSphere 企业版 4.1.1,让云原生技术更普及

Databend

轻松应用 RapidMiner 内置案例模板实现数据挖掘详解(下篇)

Altair RapidMiner

人工智能 数据挖掘 算法 数据分析 altair

告别 CentOS,开源操作系统与时代同步更需“根”的力量

OpenAnolis小助手

操作系统 龙蜥社区 CentOS 停服

腾讯特别调薪8%,年底十三薪分摊到月薪:福利升级还是另有深意?

王中阳Go

腾讯 面经

Linux多线程

不在线第一只蜗牛

Linux 运维 多线程 服务器

企业数字化转型对低代码开发平台的推动促进影响

EquatorCoco

低代码 数字化 企业转型

“Pandabuy事件后,淘宝代购集运系统如何强化仿牌敏感词风控策略“

tbapi

淘宝代购集运系统 Pandabuy 逆向海淘系统

K8S 中的 CRI、OCI、CRI shim、containerd

快乐非自愿限量之名

Kubernetes 容器

本周五开讲!AI 时代的运维开发工具 OS Copilot 陪跑班,分享云上最佳实践案例

OpenAnolis小助手

Alibaba Cloud Linux OS Copilot 运维开发工具

MXNet API入门 —第3篇_语言 & 开发_Julien Simon_InfoQ精选文章