QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

阿里巴巴 AAAI 2018 录用论文:将句法信息加入实体表示模型

  • 2018-01-09
  • 本文字数:1517 字

    阅读完需:约 5 分钟

论文名称:Syntax-aware Entity Embedding for Neural Relation Extraction(句法敏感的实体表示用于神经网络关系抽取)

团队名称:业务平台事业部

作者:何正球,陈文亮,张梅山,李正华,张伟,张民

摘要

句法敏感的实体表示用于神经网络关系抽取。关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。近年来基于神经网络的关系抽取模型把句子表示到一个低维空间。这篇论文的创新在于把句法信息加入到实体的表示模型里。首先,基于 Tree-GRU,把实体上下文的依存树放入句子级别的表示。其次,利用句子间和句子内部的注意力,来获得含有目标实体的句子集合的表示。

研究背景和动机

关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。远程监督模型通过将知识库应用于非结构化文本对齐来自动构建大规模训练数据,从而减轻对人工构建数据的依赖程度,并使得模型跨领域适应能力得到增强。然而,在利用远程监督构建语料的过程中,仅仅利用实体名称进行对齐,而不同实体在不同关系下应该具有更加丰富的多样的语义表示,从而导致错误标注等问题。因此,一套更加丰富的实体表示显得尤为重要。

另一方,基于语法信息的方法通常作用于两个实体之间的关系上,而语法信息是可以更加丰富实体的表示的。因此,本文基于句法上下文的实体表示来丰富实体在不同关系模式下的语义,并结合神经网络模型处理关系抽取任务。

相关工作介绍

我们把相关的工作大致分成早期基于远程监督的方法和近年来基于神经网络模型两类。

为了解决关系抽取任务严重依赖于标注语料的问题,Mintz et al.(2009) 率先提出了基于远程监督的方法构建标注语料。然而,这样构建的自动标注语料含有大量的噪声。为了缓解语料中噪声带来的影响,Riedel et al.(2010) 将关系抽取看成是一个多实例单类别的问题。进一步的,Hoffmann et al.(2011) 和 Surdeanu et al.(2012) 采取了多实例多类别的策略。同时,采用最短依存路径作为关系的一个语法特征。上述方法典型的缺陷在于模型的性能依赖于特征模板的设计。

近年来,神经网络被广泛的应用于自然语言处理任务上。在关系抽取领域,Socher et al.(2012) 采用循环神经网络来处理关系抽取。Zeng et al.(2014) 则构建了端到端的卷积神经网络,进一步的,Zeng et al.(2015) 假设多实例中至少有一个实例正确地表示了相应的关系。相比于假设有一个实例表示一对实体的关系,Lin et al.(2016) 通过注意力机制挑选正面的实例更充分的使用了标注语料含有的信息。

以上这些基于神经网络的方法大多数都使用词层次的表示来生成句子的向量表示。另一方面,基于语法信息的表示也受到了众多研究者的青睐,其中最主要的即最短依存路径 (Miwa and Bansal(2016) 和 Cai et al.(2016))。

主要方法

首先,基于依存句法树,利用基于树结构的循环神经网络(Tree-GRU)模型生成实体在句子级别的表示。如上图所示,有别于仅仅使用实体本身,我们能够更好地表达出长距离的信息。具体的实体语义表示如下图所示。我们使用Tree-GRU 来获得实体的语义表示。

其次,利用基于子节点的注意力机制(ATTCE,上图)和基于句子级别的实体表示注意力机制(ATTEE,下图) 来减轻句法错误和错误标注的负面影响。

实验结果

本文在NYT 语料上进行了实验。最终结果如上图所示。其中,SEE-CAT 和SEE-TRAINS 分别是本文使用的两种结合三种向量表示(句子的向量表示,两个实体的向量表示)的策略。从图中可以看出,本文提出的模型在相同数据集上取得了比现有远程监督关系抽取模型更好的性能。

总结

本文的实验结果表明,更丰富的命名实体语义表示能够有效地帮助到最终的关系抽取任务。

如果您也有论文被 AAAI录用或者对论文编译整理工作感兴趣,欢迎关注AI前线(ai-front),在后台留下联系方式,我们将与您联系,并进行更多交流!

2018-01-09 17:222453

评论

发布
暂无评论
发现更多内容

Spring Data Elasticsearch 使用示例

Java elasticsearch 4月月更

OpenHarmony加速行业应用落地,多款软件发行版正在通过兼容性测评

OpenHarmony开发者

OpenHarmony

灵感乍现!造了个与众不同的Dubbo注册中心扩展轮子

捉虫大师

Java dubbo 注册中心 4月月更

APICloud数据云3.0使用教程

YonBuilder低代码开发平台

后端开发 APP开发 APICloud 数据云

没日没夜做需求,就能交出满分答卷吗?

LigaAI

敏捷开发 需求

《写作的逻辑》读书笔记

坚果

4月月更

Amazon Aurora 读写能力扩展之 ShardingSphere-JDBC 篇

SphereEx

Apache 数据库 开源 ShardingSphere SphereEx

TOGAF 10新鲜出炉了!

涛哥 数字产品和业务架构

企业架构 TOGAF

常见问题(FAQ)

源字节1号

在线Excel转公式工具

入门小站

工具

Docker下,pinpoint环境搭建

程序员欣宸

Java Docker 4月月更 Pinpoint

使用 GoRouter 进行 Flutter 导航:Go 与 Push

坚果

4月月更

IDC最新报告:澳鹏AI全生命周期数据解决方案在市场上具独特优势

澳鹏Appen

人工智能 大数据 数据标注 训练数据 数据训练

linux之mktemp命令

入门小站

FL STUDIO20.9中文版汉化包注册激活教程

茶色酒

FL STUDIO20.9

Windows Edge 浏览器的有关 URL 链接的复制粘贴

HoneyMoose

SqlServer主备构建探索

Lane

SqlServer

Redis太难?阿里P8总结的Redis灵魂拷问70题解析,还不懂我就哭了

Java架构追梦

Java 后端开发 程序员面试 Redis 数据结构

课程四

ASCE

Flutter 网络请求 Dio 拦截器详解

岛上码农

flutter ios 安卓开发 4月月更 跨平台应用

融云国产化适配排坑指南

融云 RongCloud

Tomcat:网络请求原理分析

IT巅峰技术

在线文本代码对比

入门小站

工具

redis优化系列(六)高可用集群Redis Cluster的认识

乌龟哥哥

4月月更

如果只有一周时间,怎么快速提升线上系统的稳定性?

Samson

运维 监控 技术管理 SRE 系统稳定性

H2 数据库采用客户/服务器端连接数据的 JDBC 参数

HoneyMoose

yarn add electron安装失败

空城机

YARN Electron

H2 数据库如何以服务器方式启动

HoneyMoose

[Day27]-[二叉树] 遍历

方勇(gopher)

LeetCode 算法和数据结构

阿里巴巴AAAI 2018录用论文:将句法信息加入实体表示模型_阿里巴巴_阿里巴巴业务平台事业部_InfoQ精选文章