写点什么

你真的需要数据湖吗?

  • 2019-12-05
  • 本文字数:1972 字

    阅读完需:约 6 分钟

你真的需要数据湖吗?

数据湖已经成为许多大数据项目的基石,就因为它们在处理高速生成的大量数据(如 web、传感器或应用程序活动数据)时,提供了更容易、更灵活的选择。由于这类数据源越来越普遍,大家对数据湖的兴趣也在快速增长。然而,数据湖真的适合你吗?本文将带你一起来看四个指标,帮助你理解是该加入数据湖的潮流,还是应该坚持传统的数据仓库。


数据湖已经成为许多大数据项目的基石,就因为它们在处理高速生成的大量数据(如 web、传感器或应用程序活动数据)时,提供了更容易、更灵活的选择。由于这类数据源越来越普遍,大家对数据湖的兴趣也在快速增长。


然而,与任何新兴技术一样,不存在放之四海而皆准的解决方案:数据湖可能非常适合某些场景,但在其他情况下,坚持使用经实践检验过的数据库架构将是更好的解决方案。在本文中,我们将研究四个指标,它们应该有助于你理解是应该加入数据湖的潮流,还是应该坚持传统的数据仓库。但首先,让我们通过定义术语“数据湖”来设定讨论的范畴。

数据湖:基本定义

数据湖是一种通常被定义为大数据架构的方法,它侧重于将非结构化或半结构化数据以其原始格式存储在一个服务于多个分析用例或服务的存储库中。在此,存储和计算资源是解耦的,因此数据驻留在廉价的对象存储中,如 Hadoop on-premise 或 Amazon S3,而各种工具和服务(如Apache PrestoElasticsearch和 Amazon Athena)可以用来查询这些数据。


这与传统的数据库或数据仓库架构不同,在传统的架构中,计算和存储是耦合的,为了实施一系列模式,数据是根据摄入进行结构化的。数据湖使采用“现在存储,以后分析”的方法变得更容易,因为几乎不需要付出什么努力即可将数据输入到这个湖中;然而,在分析数据时,可能会出现一些传统的数据准备挑战


现在定义有了,接下来的问题是,你的组织需要数据湖吗?让我们从这 5 个关键指标开始。

1. 数据的结构是怎样的?

数据湖非常适合存储大量的非结构化和半结构化数据。将这类数据存储在数据库中需要做大量的数据准备,因为数据库是围绕结构化表构建的,而不是 JSON / XML 格式的原始事件。


如果你的大部分数据是由结构化的表格组成的——例如,预先处理过的 CRM 记录或财务资产负债表——那么坚持使用数据库会更容易。但是,如果你正在处理大量基于事件的数据,比如服务器日志或点击流,那么以原始形式存储这些数据并根据你的用例构建特定的 ETL 流可能会更容易一些。

2. 你的 ETL 过程有多复杂?

ETL (extract-transform-load,抽取-转换-加载)通常是实际使用数据的前提条件;但是,在处理大数据或流数据时,由于使用 Spark/Hadoop 等代码密集型框架编写 ETL 作业的复杂性,它会成为一个主要的障碍。


为了最小化花费在 ETL 上的资源数量,请尝试确定主要瓶颈发生在哪里。如果你在尝试将半结构化和非结构化数据“调整适应”到关系数据库方面遇到了很大的困难,那么现在是时候考虑转换到数据湖了。然而,创建从湖中向你将用于分析、机器学习的各种目标服务的 ETL 流仍然可能遇到很多挑战。在这种情况下,你可能想要使用一个数据湖 ETL 工具来自动化这些过程。

3.数据保持是问题吗?

由于数据库将存储与计算结合在一起,在数据库中存储非常大的数据量就变得非常昂贵。这就导致了很多数据保留方面的问题——为了控制成本,要么删除数据中的某些字段,要么限制保存历史数据的时间。


如果你的组织在不断努力寻找为了分析而保持数据和为了控制成本而删除数据之间的平衡点,数据湖解决方案可能是为了——数据湖架构建立在廉价的对象存储之上,允许你持有“嗅”到的 tb 甚至海量历史数据而不必花费多少成本。

4. 你的用例是可预测的还是实验性的?

你应该问的最后一个问题是,你打算如何处理这些数据。如果你只是试图建立一个报告(或一组报告,或仪表板),基本上是针对定期更新的表运行一组预先确定的查询,那么数据仓库可能会是一个很好的解决方案,你可以使用 SQL 和可用的数据仓库和业务智能工具简单地实现此类解决方案。


然而,对于更多的实验性用例(比如机器学习和预测分析),提前知道你需要什么数据以及你想要如何查询它是比较困难的。在这些情况下,数据仓库的效率可能非常低,因为预定义的模式将限制你研究数据的能力。在这些情况下,数据湖可能是更好的选择。

结论:数据湖适合你吗?

以“视情况而定”结尾的文章总是让人感觉像是在逃避,但事实是,大多数技术问题并没有一个唯一解。当你的数据达到一定的规模和复杂性时,数据湖无疑是最佳选择。你的组织在处于这些的情况吗?你可以用以上四个问题来回答这个问题。


作者介绍:


Eran Levy 是Upsolver的市场总监。Upsolver 是云原生平台,你可以使用一个简单的、可视化的 UI 和 SQL 来配置它。世界上大多数创新型的公司都使用 Upsolver 来自动化所有数据湖操作:摄取、存储管理、模式管理和 ETL 流(包括聚合和连接)。


原文链接:


Do You Actually Need a Data Lake?


2019-12-05 09:043734
用户头像
蔡芳芳 InfoQ主编

发布了 801 篇内容, 共 564.1 次阅读, 收获喜欢 2794 次。

关注

评论

发布
暂无评论
发现更多内容

云原生文件存储 CFS 线性扩展到千亿级文件数,百度沧海·存储论文被 EuroSys 2023 录用

Baidu AICLOUD

文件存储 元数据 posix

什么是人工智能领域模型的 Presence Penalty 参数?

汪子熙

人工智能 机器学习 深度学习 强化学习 三周年连更

在这样的公司工作没意义

Jadedev

职场 职场经验 职场发展

2023-05-06:X轴上有一些机器人和工厂。给你一个整数数组robot,其中robot[i]是第i个机器人的位置 再给你一个二维整数数组factory,其中 factory[j] = [posit

福大大架构师每日一题

golang rust 福大大

苹果Mac最佳卸载程序和清理助手:App Cleaner & Uninstaller

Rose

mac系统清理优化软件 苹果系统清理 App Cleaner

容量成本性能全都要有, Redis 容量版 PegaDB 设计与实践

Baidu AICLOUD

macbook触摸板怎么按右键

理理

MacBook 触控板

玛雅Maya 2024 发布 maya2024破解

理理

maya2024下载 maya2024新功能 maya2024安装教程

团队管理的五个关键词

Jadedev

团队管理

基于 EKS Fargate 搭建微服务性能分析系统

亚马逊云科技 (Amazon Web Services)

Python

Go常用设计模式(中)

闫同学

三周年连更

Office Mac升级提醒如何去掉?关闭Microsoft AutoUpdate弹框提示

Rose

许可证 Office 2019中文版 Office Mac office更新 office2021下载

Macos媒体播放器 Movist Pro 针对 macOS 13 Ventura 进行了优化

Rose

Movist Pro 中文版 Movist Pro下载 Macos媒体播放器 视频播放器下载

MobPush 厂商通道SDK集成指南

MobTech袤博科技

云原生应用使用的云服务组件介绍

穿过生命散发芬芳

三周年连更 云服务组件

Django笔记二十二之多数据库操作

Hunter熊

Python django database

一套前后台全部开源的H5商城送给大家

越长大越悲伤

开源 java‘

责任心与执行力

Jadedev

职业素养 团队文化 人格

Shell的参数传递

芯动大师

Shell 三周年连更 shell参数传递

对象存储——Minio初探

程序员架构进阶

对象存储 Minio 5月日更 5月月更

macOS硬盘如何格式转换?用Tuxera NTFS就够了!

Rose

ntfs FAT32

Mac 触控增强神器:BetterTouchTool如何使用?

Rose

苹果软件下载 BetterTouchTool破解 BetterTouchTool教程 Mac 触控增强神器

蚂蚁安全科技 Nydus 与 Dragonfly 镜像加速实践 | 龙蜥技术

OpenAnolis小助手

开源 dragonfly 操作系统 龙蜥技术 镜像加速

清晰的定位对团队成功的影响

Jadedev

团队管理

OpenHarmony设备开发从零到一

鸿蒙之旅

OpenHarmony 三周年连更

软件测试 | MTV开发模式

测吧(北京)科技有限公司

测试

科大讯飞发布讯飞星火认知大模型,深度赋能教育、办公、汽车、数字员工领域

Xue Liang

大数据 大模型时代 AIGC

Pratt Parsing - 自顶向下的算符优先级

乌龟哥哥

三周年连更

架构训练营模块一作业

Geek_3d7c4d

架构训练营

Focus Matrix for Mac(智能任务管理器)

Rose

mac软件下载 Focus Matrix 任务管理器

在啥样的公司工作没意义

Jadedev

职场 职场经验 职场发展

你真的需要数据湖吗?_大数据_Eran Levy_InfoQ精选文章