AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

抗拒使用 GPT-4 和 Copilot 写代码,拥有 19 年编程经验的老程序员“面试”被淘汰

  • 2023-06-05
    北京
  • 本文字数:2755 字

    阅读完需:约 9 分钟

抗拒使用GPT-4和Copilot写代码,拥有19年编程经验的老程序员“面试”被淘汰

一个成本低速度快,一个代码质量高程序可扩展性好,你会怎么选?

 

一位名叫 Ab Advany 的技术人员最近接了个小活儿,帮他的一位好友在其工作单位监督编程案例研究。这项案例研究总共花了两周时间,他们聘请了两名程序员为其创建最小可行产品(MVP)。

 

这两名程序员都是为该机构工作了很长时间的承包商。Ab Advany 之前也曾与二人合作,对两人的背景十分了解。首先是来自德国的 Alex,拥有 19 年编程经验,采取 100%纯手动编程。来自巴基斯坦的 Hamid 仅拥有 4 年开发经验,在编程中采用了手写代码+Copilot+GPT-4+无代码开发。

 

Ab Advany 表示他们原本以为 Hamid 大概能在 8 到 10 周内完成工作,而 Alex 可能要多花上 1、2 周时间。但最终结果却令他们大为意外!Hamid 在一周之内完成了此项目,端到端测试与测试覆盖率均达到 100%;Alex 则只完成了 7%。Hamid 的开发总成本为 3819 美元,Alex 的开发成本则为 3520 美元。

 

让不使用 AI 的老程序员出局?

 


具体来说的话,两位程序员都收到了 Figma 设计要求和详细规格。设计师会帮助他们获取所需资产,外加需要集成的现有代码。

 

Hamid 在一周之内就完成了首个版本,代码测试覆盖率和无代码部分的端到端测试均达到 100%。95%的工作量似乎已经完成,而且基本看不出有什么问题……

 

Hamid 在 @bubble 中构建了 UI 和前端工作流,使用 GPT-4 生成 Cloudflare Workers,使用 Copilot 集成现有代码,并使用 GPT-4 来生成测试。

 

Hamid 的开发成本细则:

 

GPT-4: 211 美元

Copilot: 20 美元

Cloudflare: 5 美元

Bubble: 134 美元

总计: 2460 美元 (共 41 个工时)

托管/运行成本:每月 139 美元

 

Alex 完成了总工作量的约 7%,成本为:

 

Vercel: 20 美元

总计: 3500 美元

开发所有内容的预期成本:4.5 万美元。预计额外还需要 1.1 万美元进行测试。

托管/运行成本:每月 20 美元

 

Ab Advany 的好友跟 Alex 交流了研究感受,对方的结论是“但纯手动开发的应用运行成本要低得多,而且一切都在自己的掌握当中。”Alex 显然没理解 13 倍的产品发布速度和 1/25 的开发成本到底意味着什么。

 

他们让 Alex 出局了:因为他只相信手动编码,而不愿借助无代码/AI 的力量……而 Hamid 则收到了该公司全职工作的邀请:他将培训其他程序员,让大家结合无代码+AI 进行编码……

 

拉仇恨?!

 

Ab Advany 将这个事情分享到了 Twitter,他很好奇这样的比对会带来怎么样的结果。

 

他还在 Twitter 线程里补充道:“我朋友所在的机构有 100 多位像 Alex 这样的开发人员。现在,他们打算对老程序员做重新培训,甚至用 Hamid 这种新兵取代他们……我觉得 Hamid 这类开发者五年之后也仍然不愁工作岗位,但 Alex 所代表的群体可能会被迫跳槽或者转行。大家怎么看?”

 

案例发布后,大家对他进行了更仔细的问询:

 

网友 A:“为什么 Alex 不想使用这些工具?我从 1986 年开始编程,我就很喜欢使用 Copilot、ChatGPT 这些,它们让我的生活更轻松……”

 

Ab Advany:“你阅读完这个 Twitter 线程的话,你会看到许多传统程序员对‘为什么不使用 AI’的答复。其中比较重要的一点是,当前的 AI 有上下文限制。因此,要使其工作,我们需要进行函数式编程。”

 

网友 B:“用 GPT-4 武装的 Alex(老程序员) 会是一个更好的解决方案。难道只有我这样觉得吗?”

 

Ab Advany:“Alex 不想使用 GPT-4。他认为会产生错误的代码。特别是这意味着 Alex 需要适应 AI,而不是 AI 适应 Alex。”

 

同时 Ab Advany 也收到了非常多的反方意见:

 

“当然,对于简单的项目、网站/应用程序等,你可以得出这个结论。但对于具有更高复杂度的新颖解决方案,你不应该运行你不理解的代码,它关乎到开发者的声誉。如果它们存在安全漏洞,甚至有相关法律责任,该怎么办?”

 

“对于构建可扩展和可维护的长期关键任务项目,我会选择 Alex。”“解雇 Alex 是错误的举动。”

 

“散布这样的谎言,你能得到什么?在营销吗?此外,这样的比较甚至没有提到代码质量。将来你肯定要为质量、性能和可维护性付费。”“可能有些人真不在乎代码质量吧?”

 

……

 

不出所料,仅两天后,他发了条新推文:“我的推文引起了程序员们的强烈不满。”

 

更要命的是他的推文配图,“RIP,传统程序员”。他坚持认为大家必须更好地评估问题并选择正确的前进方向。因为太过激进,所以他得到了网友们对他进一步的评价:“真是越来越让人讨厌了!”

 



抗拒 AI 辅助编程会是一场“必败仗”吗?

 

基于大型语言模型的 AI 工具,比如 OpenAI Codex ,或来自微软的 GitHub Copilot ,亦或来自谷歌 DeepMind 的 AlphaCode,已经开始改变许多开发者的工作方式。虽然目前它们只可以用来编写代码片段、发现错误、编写注释、提供建议等,但这并不妨碍让大家见识到它的威力。

 

去年,谷歌的研究人员发现,人工智能将“编码迭代时间”减少了 6%,这份研究主要针对谷歌内部的 10,000 名开发人员。

 

GitHub 去年也调查了 2,000 名程序员,了解他们如何使用 GitHub 的 AI 编码助手 Copilot。大多数人表示 Copilot 帮助他们减少挫折感并增加成就感;88% 的人表示这提高了他们的工作效率。在报告中,GitHub 说道:“使用 Copilot 辅助编程的开发人员完成任务的速度明显更快——比不使用它的快 55%。”

 


虽然生成式 AI 模型和工具还在改进中,但一点也不影响其普及速度,越来越多的开发者开始使用它们。以 GitHub Copilot 为例,微软于 2022 年 6 月首次面向个人推出该工具时,平均有超过 27% 的开发人员代码是由 GitHub Copilot 生成的。到了今年 5 月,微软再次统计时,这个数字已经变成了 46%——而在 Java 编程语言环境中,这个数字跃升到了 61%。

 

所以 GitHub 大胆断言,“鉴于这项技术可以帮助开发者加快构建速度,所以展望未来,不采用生成式人工智能工具的科技公司将在生产力方面处于明显劣势。”

 

Ab Advany 分享的案例,也许这并不是让我们单纯地比较哪个方案更好,而是让我们明白,我们已经有了很多选择,AI、低代码等工具都可以用来解决部分问题,那么该是时候让我们再次评估如何让开发人员进一步专注于核心业务逻辑、减少底层开发、让大家更高效更轻松地工作了。

 

至于 AI 辅助编程是不是未来发展方向?这就像一位网友给 Ab Advany 的评论中那样:“纯粹的非 AI 辅助编程工程师在这里是在打一场必败仗,这很明显……现在谁会在没有 Copilot 的情况下编写代码呢?”

 

参考链接:

https://twitter.com/advany/status/1664451798793584642

https://archive.ph/o21uE#selection-819.4-819.11

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

https://github.blog/2023-05-09-how-companies-are-boosting-productivity-with-generative-ai/


相关阅读:

GPT-4 重磅发布,吊打 ChatGPT!编程能力牛到让我睡不着:10 秒做出一个网站,1 分钟开发一个游戏

集成 GPT-4 的编程神器来了,GitHub 发布 Copilot X:编程 30 年,突然就不需要手敲代码了?!

2023-06-05 16:1124024

评论

发布
暂无评论
发现更多内容

权威学者、企业CFO荟聚上海国家会计学院,共探「智能会计 价值财务」

用友BIP

智能会计 价值财务 用友智能财务 业财融合

阿里十年资深码农共享SpringCloud微服务架构实战文档

Java你猿哥

微服务架构 Spring Cloud ssm 架构设计 架构师

分布式技术剖析

星环科技

分布式

这一秒,困扰了程序员 50 年!

Java你猿哥

Java 程序员 ssm 计算机

从入门到精通,超详细的程序员Java学习路线指南

Java你猿哥

Java 数据库 Web ssm 死磕 Java 基础

代码重构:面向单元测试

阿里技术

不愧是阿里内部新产springboot实战派文档!干货满满,不讲一句废话

采菊东篱下

微服务

阿里RocketMQ创始人首次分享出这份RocketMQ技术内幕神级架构手册

做梦都在改BUG

Java RocketMQ 消息队列 消息中间件

戴尔科技园动力计划,携手中南高科赋能中小企业数字化转型

科技热闻

度量分析开源社区健康度,助力企业开源生态健康发展——华为开源管理中心王晔晖

开源雨林

开源治理 OSPO OSS Compass CHAOSS

分布式计算技术(上):经典计算框架MapReduce、Spark 解析

星环科技

分布式计算

竞争焦点转向数智底座 用友能否再引领

用友BIP

用友iuap 用友技术大会 升级企业数智化底座

anyRTC快对讲融合通信指挥调度平台

anyRTC开发者

音视频 融合通信 快对讲 视频监控 综合调度

AppleParty(苹果派)v3 支持 App Store 新定价机制 - 批量配置自定价格和销售范围

37手游iOS技术运营团队

In App Purchase AppleParty App Store Connect API 批量创建内购IAP app store

电信及互联网行业数据安全内控审计建设实践 | 盾见

极盾科技

数据安全

自动化回归测试平台 AREX 0.2.8 版本正式发布!

AREX 中文社区

自动化测试 接口测试 回归测试

数栈V6.0全新产品矩阵发布,数据底座 EasyMR 焕新升级

袋鼠云数栈

大数据 基础软件 数字化转型

iSulad+Kuasar:管理面资源消耗锐减 99%的新一代统一容器运行时解决方案

openEuler

Linux 容器 云原生 操作系统 Kubernetes Serverless

分析型数据库:MPP 数据库的概念、技术架构与未来发展方向

星环科技

MPP数据库

MySQL8.0.32的安装与配置

Java你猿哥

Java MySQL ssm Java工程师

Rust-Shyper:基于 Rust 语言的高可靠、开源嵌入式 Hypervisor

openEuler

Linux rust 操作系统 虚拟机 嵌入式

基于公共信箱的全量消息实现

百度Geek说

大数据 即时通讯 企业号 4 月 PK 榜 公共信箱

Github星标120k!这份阿里独有的高并发实战笔记太强了!

做梦都在改BUG

Java redis zookeeper Netty 高并发

分布式场景下,Apache YARN、Google Kubernetes 如何解决资源管理问题?

星环科技

资源管理 Apache YARN

星环科技自研技术,加速大数据从持久化、统一化、资产化、业务化到生态化

星环科技

大数据

企业数据平台建设的基石:构建统一的数据存算能力

星环科技

存算能力

分布式存储技术(上):HDFS 与 Ceph的架构原理、特性、优缺点解析

星环科技

hdfs 分布式存储 Ceph

SysCare:为您的操作系统保驾护航

openEuler

Linux 操作系统 openEuler 内核 热补丁

如何创造数据资产价值?如何对内赋能业务运营,对外创造市场价值?

星环科技

数据资产 数据要素流通

分布式存储技术(下):宽表存储与全文搜索引擎的架构原理、特性、优缺点解析

星环科技

分布式 全文搜索

分布式计算技术(下):Impala、Apache Flink、星环Slipstream

星环科技

分布式计算 Slipstream

抗拒使用GPT-4和Copilot写代码,拥有19年编程经验的老程序员“面试”被淘汰_语言 & 开发_Tina_InfoQ精选文章