写点什么

作业帮 K8s Serverless 虚拟节点大规模应用实践

  • 2022-04-29
  • 本文字数:3100 字

    阅读完需:约 10 分钟

作业帮 K8s Serverless 虚拟节点大规模应用实践

背景介绍


作业帮的服务端技术体系正向着云原生化发展,提升资源利用率是云原生技术栈的核心目标之一,资源利用率的提升意味着以更少的计算节点承载更多的应用实例,极大地降低资源开销。而 Serverless 具有弹性伸缩、强隔离性、按量计费、运维自动化等特点,带来了降低交付时间、降低风险、降低基础设施成本、降低人力成本等核心优势。

 

Serverless 化一直是作业帮基础架构探索的核心方向。Serverless 化长期来看有两种方案,一种是函数计算,一种是 Kubernetes Serverless 虚拟节点。

 

Kubernete Sserverless 虚拟节点对已经运行在 Kubernetes 上服务无实际使用差异,用户体验较好,业务服务使用无感知,可以由基础架构进行调度迁移。比如,阿里云 ECI 就是一种典型 Kubernetes 虚拟节点方案。

 

但我们的业务场景需要更精细化的资源管理策略,需要我们更紧密结合资源管理述求的调度策略。所以我们在云厂商能力之上研发了自己的方案:

 

2020 年,我们开始尝试将部分密集计算调度到 Serverless 虚拟节点上,用 Serverless 虚拟节点底层服务器的强隔离能力来规避服务间相互影响;

 

2021 年,我们就将定时任务调度到 Serverless 虚拟节点,替代节点扩缩容,应对短期运行任务,提升资源利用率降低成本;

 

2022 年,我们开始将核心在线业务调度到 Serverless 虚拟节点,而在线业务是最敏感、用户易感知。

 

同时在线业务有着明显的波峰和波谷,在高峰期弹性调度到 Serverless 虚拟节点将带来巨大的成本收益。随着而来的要求也越高,尽可能保证在线业务在性能、稳定性上和物理服务器效果一致,业务观测感知上一致。也就是让上层业务服务感知不到 Serverless 虚拟节点和物理服务器之间的差异。

 

  1. Kubernetes Serverless 虚拟节点 

 

虚拟节点并不是真实的节点,而是一种调度能力,支持将标准 kubernetes 集群中的 pod 调度到集群服务器节点之外的资源中。部署在虚拟节点上的 pod 具备裸金属服务器一致的安全隔离性、网络隔离性、网络连通性,又具有无需预留资源,按量计费的特性。 


  1. Kubernetes Serverless 虚拟节点的成本优势 

 

作业帮的大部分服务都已经完成容器化,在线业务有着典型的高峰期,且高峰期持续时间较短(4 个小时/每天),全部使用裸金属服务器,高峰期服务器平均负载接近 60%,而低峰期负载只有 10%左右。此场景就非常适合 Serverless 的弹性伸缩落地,可以做一个简单的计算:假设全部使用自有服务器每小时的成本为 C,平均每天高峰期的时间为 4 小时,使用 Serverless 的单位时间成本为 1.5C,那么:

 

1. 全部使用自有服务器的总成本为 C * 24 = 24C

 

2. 保留 70%的自有服务器,高峰期增加 30%的 Serverless 来应对,此时的总成本为:C * 24 * 0.7 + 1.5C * 4 * 0.3 = 18.6C

 

理论上高峰期波峰部分使用 Serverless 可降低的成本为:(24C - 18.6C) / 24C = 22.5%, 可见,将在线服务高峰期弹性调度到 Serverless 可以节省大量的资源成本。

问题和解决方案 

 

虽然 Kubernetes Serverless 虚拟节点拥有诸多优点,但也仍然存在一些问题。

 

  1. 调度和管控问题 

 

调度层面主要解决两个问题:一是扩容时创建 POD 基于何种调度策略调度到虚拟节点,二是缩容时应优先缩虚拟节点上的 POD。这两种能力在我们当前使用的 Kubernetes 版本中能力是不足的。

 

扩容/缩容调度策略

 

扩容调度策略应该由基础架构和运维来统一把控,与业务关联度不大,因为业务方不知道底层资源层还有多少服务器计算资源可以被利用。我们理想情况下,是希望当本集群池内,物理服务器资源达到利用率瓶颈后,扩容到 serverless 虚拟节点上。这样就可以既没有容量风险也可以获得成本优势。

 

业界使用虚拟节点的演进过程:

 

1.  虚拟节点和标准节点是完全分开的,只能调度到指定的池子。

 

2. 用户不用指定 selector,当 POD 因固定节点资源不足调度 pending 的时候,会自动调度到虚拟节点上,该过程会有延迟。

 

3. 云厂商比如(阿里云 ACK Pro)的调度器会当资源不足时自动调度到虚拟节点上,这个过程自动且无延迟,相对比较理想。

 

但我们的业务场景需要更精细化的资源管理策略,需要我们更紧密结合资源管理述求的调度策略,所以我们在云厂商的能力之上研发了我们自己的方案:

 

扩容:基于在线服务的波峰波谷,进行预测推荐调度,预测高峰该服务能在集群物理机上运行的副本数阈值,通过自研调度器将超过阈值的 POD 调度到虚拟节点上。该阈值数据即集群物理机上运行副本的最优解。既能满足物理机集群的利用率也能满足性能要求。阈值太低则物理机资源浪费,阈值太高则物理机部署密度太高,资源利用率过高,影响业务。

 

缩容:缩容时优先缩 serverless 虚拟节点上的 pod 很好理解,因为常备的资源池是包年包月的单价更低,虚拟节点上的资源是按量计费的单价较高,优先缩虚拟节点上的 pod 来达到成本最优;我们通过自研调度器对虚拟节点上的 pod 注入自定义的注解,修改 kube-controller-manager 的缩容逻辑,将带有虚拟节点自定义注解的 pod 置于缩容队列的顶部,来完成优先缩容虚拟节点上的 POD。

 

管控面 devops 平台除了支持自动计算调度到虚拟节点的阈值,还支持手动设置以便于业务进行更精细的调控。调度到虚拟节点的能力可以结合 hpa、cron-hpa 同时使用,来满足业务更灵活的需求。管控面还支持故障场景下一键封锁虚拟节点,以及应对更极端情况(如机房整体故障)的多云调度能力。

 

  1. 观测性问题 

 

我们的观测服务都是自建,比如(日志检索、监控报警、分布式追踪)。因为是虚拟节点,POD 里跑的监控组件、日志采集是由云厂商内置的。我们需要保证业务感知层面上,pod 在 Serverless 虚拟节点和物理服务器上运行一致,所有就有一个转化到我们自有观测服务的过程。

 

监控:在监控方面,云厂商虚拟节点完全兼容 kubelet 监控接口,可以无缝接入 Prometheus。完成 Pod 实时 CPU/内存/磁盘/网络流量等监控,做到了和普通节点上的 POD 一致。

 

日志:在日志采集方面,通过 CRD 配置日志采集,将日志发送到统一的 Kafka。我们自研了日志消费服务,记录各云厂商和自有节点上的消费情况。

 

分布式追踪:在分布式追踪方面,由于无法部署 daemonset 形式的 jeager agent,我们 jeager client 端做了改造,通过环境变量识别 pod 运行的环境,如果是在虚拟节点上则跳过 jeager agent,直接将分布式追踪的数据推送到 jeager colletror。

 

  1. 性能、稳定性及其他问题 

 

serverless 虚拟节点底层性能差异:由于底层计算资源规格的不同以及虚拟化层带来的开销,性能可能和裸金属服务器有所差异,这就需要对时延非常敏感的业务,在上虚拟节点之前进行充分的测试和评估。

 

云服务器库存风险:高峰期大量扩容,如果云厂商某个规格的的资源池水位低,可能会扩不出来指定规格的资源。这里我们是开启自动升配,也就是申请 2c2G,理论上应该匹配 2c2G 的 ECI,如果没有库存,会匹配到 2c4G 的 ECI。以此类推。

 

问题定位排查:因为虚拟节点本质上使用的是云厂商资源池,不在我们自身的管控范围内,当业务出现异常时虽然可以自动摘流,但无法登陆到机器排查问题,比如像查看系统日志、取回 core dump 文件等操作就比较困难。在我们的建议下,云服务(阿里云 ECI)已经支持将 core dump 自动上传到 oss 了。

规模和收益 


目前该方案已经成熟,高峰期已有近万核规模的核心链路在线业务运行在 Kubernetes Serverless 虚拟节点。随着业务的放量,未来运行在 Serverless 虚拟节点上的服务规模会进一步扩大,将节省大量的资源成本。


作者介绍:

 

吕亚霖,作业帮基础架构 - 架构研发团队负责人。负责技术中台和基础架构工作。在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO 微服务框架、DevOps 的落地实践。

 

别路,作业帮基础架构-高级研发工程师,在作业帮期间,负责多云 k8s 集群建设、k8s 组件研发、linux 内核优化调优相关工作。

2022-04-29 16:564197

评论

发布
暂无评论
发现更多内容

Qualcomm QCN9274 and QCN6224: Performance comparison and application scenarios of RF module cpus

wifi6-yiyi

qcn9274 QCN6224

8000-12000奖金等你拿,OpenTiny 开源之夏10大导师齐上阵,带你立刻get 项目详情!!!

OpenTiny社区

Vue 前端 低代码 组件库 OpenTiny

公司里的“卷王”,是主动选择还是迫于无奈?

伤感汤姆布利柏

vivo蓝心大模型登陆火山方舟,一站式方案实现智能普惠

新消费日报

结合多模态 AI 谷歌展示 AR 眼镜原型机;Meta 被曝开发带摄像头的 AI 耳机丨 RTE 开发者日报 Vol.204

声网

奖金+1 万,OpenTenBase 开源核心贡献挑战赛,KB 专家助力其跑在 K8s 上

小猿姐

开源 Kubernetes

百度百舸 AIAK-LLM 的大模型训练和推理加速实践

Baidu AICLOUD

训练 推理 大模型

一键自动化博客发布工具,用过的人都说好(51cto篇)

程序那些事

工具 自动发布

不容错过的邀请:《哈利·波特》全系列中英文版本上线华为阅读

最新动态

软件测试学习笔记丨MyBatis 多条件查询和模糊查询

测试人

软件测试

数据库索引回表困难?揭秘PolarDB存储引擎优化技术

阿里云瑶池数据库

数据库 阿里云 polarDB 分布式,

Python最容易犯的五个错误,你中了几个?

我再BUG界嘎嘎乱杀

Python 编程语言 开发语言

宝尊将于2024年5月28日发布2024年一季度未经审计财务业绩

财见

MySQL 给用户添加 ALTER VIEW 的权限

华为云开发者联盟

MySQL 数据库 华为云 华为云开发者联盟 企业号2024年5月PK榜

Altair 宣布收购 Research in Flight,为空气动力学分析开辟新途径

财见

什么是ARP攻击,怎么做好主机安全,受到ARP攻击有哪些解决方案

德迅云安全杨德俊

2024/25 奥特斯再度迈入增长之路

财见

一文读懂 Pencil 积分,打开 Pencils Protocol 生态权益大门

西柚子

企业如何搭建API经济形成二次增长?

幂简集成

API API经济

win版JetBrains PhpStorm 2024(PHP集成开发环境)中文特别版

iMac小白

PhpStorm中文版 Phpstorm下载 PhpStorm激活版 PhpStorm破解版

万界星空科技电线电缆行业生产管理智能化MES

万界星空科技

mes 万界星空科技 电线电缆行业 电线电缆mes

企业级小程序技术平台与中间件提供商凡泰极客完成近亿元B轮融资

FN0

小程序 小程序化

MyBatis如何通过拦截器修改SQL

源字节1号

开源 软件开发 前端开发 后端开发 小程序开发

Python在物联网中的应用

技术冰糖葫芦

一文读懂Pencils Protocol Valut的收益叙事:一鱼多吃

西柚子

金蝶发布AI管理助手 重构苍穹AI平台

人称T客

解锁高效创新:IPD策略如何重塑产品开发流程

IPD产品研发管理

项目管理 产品经理 IT IPD 产品研发

中国科学家颜宁荣膺2024欧莱雅-联合国教科文组织“世界杰出女科学家成就奖”

财见

作业帮 K8s Serverless 虚拟节点大规模应用实践_云原生_吕亚霖_InfoQ精选文章