写点什么

揭秘白条数据架构演变历程

  • 2020-03-25
  • 本文字数:1789 字

    阅读完需:约 6 分钟

揭秘白条数据架构演变历程

第一次演变

时间:2014.1~2015.5


目的:解决核心和非核心业务系统对关键数据库的访问;提供一个分库分表后白条数据汇总平台;满足财务结算、运营系统、客服系统对白条的数据查询(非核心业务不对主业务库做相关的数据处理)。


白条业务系统(贷、分期、还、逾、退)所生产的数据信息通过 MQ 异步将数据信息更新到 solr 集群中,solr 集群将数据表信息和 collection 进行一一对应,collection 里做 shard(针对不同表的数据 shard 的个数也不一样) 来分散数据的存储。使用 solr+hbase 做为介质,solr 做表里需要查询字段的索引,hbase 做全量数据存储。

1 Solr+hbase 数据架构

2 Solr+hbase 架构的优缺点

优点


  • 数据写入 solr 中,少量数据(>30 亿)性能非常好,通过 solr 进行 shard 部署。

  • 对实时性不是非常高的业务,直接可以查询 solr,减少到核心业务库的压力。


缺点


  • 大数据量的写入及查询慢。

  • 当有节点挂了,经常需要重启整体集群来保证集群稳定性。


solr 扩展性复杂,业务侵入性大。

第二次演变

时间:2015.6~2016.5


目的:随着业务增加,数据量不断的呈几何倍的增涨,对数据质量及完整性的要求越来越高;结算人员需导入及导出大量线上数据作为结算处理,solr+hbase 已满足不了,由此产生了白条 mongodb 的数据架构。


白条 mongodb 数据架构是引进 nosql 将业务产生的数据信息存入 mongodb,使用 mongodb 集群来按月来分表,mongodb 集群分为 3 个 mongos 、3 个 config、3 个 replica set,replica set 里也采用分片来分散数据的存储,通过 mongos 和应用系统进行数据交互。

1 白条 mongdb 数据架构

2 白条 mongdb 数据架构优缺点

优点


  • 通过按月来进行分表存储,只查询近一个月的热点数据,速度非常快,性能高。

  • 非结构化数据存储,没有固定的表结构,不用为了修改表结构而进行数据迁移。


缺点


  • 业务侵入性大,只要有数据更新,就需要在业务里做代码逻辑处理,耦合度太高,复杂。

  • 数据量在>60 亿,mongodb 架构非常适合。

  • mongdb 比较耗内存,热点数据都放在内存里,以内存换取时间性能。

  • mongodb 容量问题,单台服务器的硬盘容量是固定的,业务成倍扩增长,数据量也增长非常迅速,当超过整个集群的容量时,扩容非常麻烦。因此在做 mongodb 架构时需要考虑数据量问题,复制集扩展难度大。

第三次演变

时间:2016.10~2017.6


目的:还是业务迅速发展,数据量暴涨(60 亿+),对数据的质量及完整性的要求越来越高,业务查询量大, mongodb 经常被容量问题所困惑,有性能问题影响。并为财务、运营、客服、对账内部提供高安全、高可靠、高性能的服务


白条大数据平台,通过使用 dbrep 组件,模拟 mysql 的 slave 的方式,实时获取增量 binlog,通过解析 binglog,采集数据库变动内容,并将变动内容以 json 格式存储到(kafka)消息系统,消费端通过分布式来消费 kafka 中的消息数据信息,将消息数据按指定的 ES 索引列往 ES 里写入,并写入到 Hbase 大数据平台,大数据平台内部提供高安全、高可靠、高性能的服务。

1 白条大数据平台架构


Dbrep 是基于 kafka、zookeeper、flume 搭建的准实时数据同步系统,其主要涉及以下几大模块。


  • Dbrep-node:是 dbrep 的运行容器,根据配置,其上可以运行 dbrep 提供的各种 agent 组件,如数据采集、数据落库等常用数据同步组件。

  • Dbrep-consumer:以嵌入的方式运行在用户应用程序上,根据配置从消息中间件订阅消息,并交给用户相应的处理器进行处理。

  • Dbrep-console:dbrep 配置管理控制台,负责 node 和 consumer 具体配置信息的配置,及状态监控,异常告警等基础功能。

  • ZK 集群:存储 dbrep 基本配置,以及 dbrep 各节点间状态协调。

  • KAFKA 集群:存储数据变动记录。

2 大数据平台架构的优势

  • 数据实时性强,通过 binlog 做 mysql 的 slave 基本是秒级数据同步。

  • 数据完整性高,准确性高,mysql 的 binlog 一般不存在丢数据的问题。

  • 易扩展性,不针对业务(无业务侵入),只针对数据库。

  • 支持无限扩容,海量数据。

总结

白条大数据平台诞生之初正是互联网行业的高速发展期,经历这些年的发展,取得了很大的进步,从草根走向专业,从弱小走向规模,从分散走向统一,从杂乱走向规范。 本文主要讲述了几年来白条大数据平台架构演进的过程,技术架构单独拿出来看我认为没有绝对的好与不好,需要要放在彼时的背景下来看,要考虑业务的时效价值、团队的规模和能力、环境基础设施等等方面。 架构演进的生命周期适时匹配好业务的生命周期,才能发挥最好的效果。


2020-03-25 19:48990

评论

发布
暂无评论
发现更多内容

「 代码性能优化 」java高级程序员必知必会的55个代码性能优化技巧

小刘学编程

Java 性能优化 高级程序员 代码技巧

「 Java开发规范 」10人小团队Java开发规范参考这篇就够了

小刘学编程

Java 数据库规范 代码规范 项目规范

ChatGPT这波热潮会不会让我失业?

eng八戒

人工智能 AI 聊天机器人 openai ChatGPT

CleanMyMacX4.12.5中文版苹果电脑管家

茶色酒

CleanMyMacX4.12.5

前端培训班学习哪家比较好

小谷哥

软件测试 | App结构概述

测吧(北京)科技有限公司

测试

【2023年最新】轻松搞定MySQL数据库迁移

NineData

MySQL 数据库迁移 数据复制 数据迁移 SqlServer

深思考联合昇腾推出AI智慧病理“慧眼”计划

Geek_2d6073

「 代码性能优化 」作为一名Java程序员,你真的了解 synchronized 吗?(三)

小刘学编程

Java 性能优化 synchronized java锁

Python 内置界面开发框架 Tkinter入门篇 丁

eng八戒

Python GUI tkinter

前端报表如何实现无预览打印解决方案或静默打印

葡萄城技术团队

2023年中国网约车行业用户体验洞察

易观分析

用户体验 网约车

「 代码性能优化 」作为一名Java程序员,你真的了解 synchronized 吗?(二)

小刘学编程

Java 性能优化 synchronized java锁

无需依赖Docker环境制作镜像

tiandizhiguai

Docker k8s

模块六作业

张贺

自媒体营销或已死,内容营销为何越来越难做?

石头IT视角

【Java基础】常用序列化技术与方式

No8g攻城狮

通信协议 网络通信协议

研发提效:服务端技术方案模板参考

邴越

技术方案 模版

运维训练营第14周作业

好吃不贵

「 技术文章翻译 」jasypt-spring-boot敏感信息加密解密利器使用指南

小刘学编程

加密解密 springboot jasypt

前端开发技术培训机构怎么选好?

小谷哥

Flink X Hologres 构建企业级 Streaming Warehouse

Apache Flink

大数据 flink 实时计算

「 代码性能优化 」作为一名Java程序员,你真的会写for循环吗?

小刘学编程

Java 性能优化 for循环 技巧总结

「 前端开发规范 」10人小团队前端开发规范参考这篇就够了

小刘学编程

前端 统一代码规范 高效协同

「 代码性能优化 」作为一名Java程序员,你真的了解 synchronized 吗?(一)

小刘学编程

Java 性能优化 synchronized java锁

「 数据结构与算法 」如何系统性的学习数据结构与算法

小刘学编程

Java 学习路线 数据结构与算法

2023-02-15:商场中有一展柜A,其大小固定,现已被不同的商品摆满, 商家提供了一些新商品B,需要对A中的部分商品进行更新替换, B中的商品可以自由使用,也就是可以用B中的任何商品替换A中的任何

福大大架构师每日一题

算法 rust 福大大

Python 内置界面开发框架 Tkinter入门篇 丙

eng八戒

Python GUI tkinter

在前端培训机构怎么系统学习前端知识

小谷哥

Java开发技术培训应该怎么学习?

小谷哥

嵌入式ARM设计编程(二) 字符串拷贝

timerring

arm

揭秘白条数据架构演变历程_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章