报名参加CloudWeGo黑客松,奖金直推双丰收! 了解详情
写点什么

Q-learning 算法实践

  • 2020-02-14
  • 本文字数:5953 字

    阅读完需:约 20 分钟

Q-learning算法实践

我们将会应用 Q-learning 算法完成一个经典的 Markov 决策问题 – 走迷宫!


项目描述:


1530180453875080109.png


在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。


  1. 如上图所示,智能机器人显示在右上角。在我们的迷宫中,有陷阱(红色炸弹)及终点(蓝色的目标点)两种情景。机器人要尽量避开陷阱、尽快到达目的地。

  2. 小车可执行的动作包括:向上走 u、向右走 r、向下走 d、向左走 l。

  3. 执行不同的动作后,根据不同的情况会获得不同的奖励,具体而言,有以下几种情况。


  • 撞到墙壁:-10

  • 走到终点:50

  • 走到陷阱:-30

  • 其余情况:-0.1


  1. 我们需要通过修改 robot.py 中的代码,来实现一个 Q Learning 机器人,实现上述的目标。


Section 1 算法理解


1. 1 强化学习总览


强化学习作为机器学习算法的一种,其模式也是让智能体在“训练”中学到“经验”,以实现给定的任务。但不同于监督学习与非监督学习,在强化学习的框架中,我们更侧重通过智能体与环境的交互来学习。通常在监督学习和非监督学习任务中,智能体往往需要通过给定的训练集,辅之以既定的训练目标(如最小化损失函数),通过给定的学习算法来实现这一目标。然而在强化学习中,智能体则是通过其与环境交互得到的奖励进行学习。这个环境可以是虚拟的(如虚拟的迷宫),也可以是真实的(自动驾驶汽车在真实道路上收集数据)。


在强化学习中有五个核心组成部分,它们分别是:环境**(Environment、智能体Agent、状态State)、动作Action和奖励Reward)**。在某一时间节点 t:


  • 智能体在从环境中感知其所处的状态

    1530180923464001413.png

  • 智能体根据某些准则选择动作

    1530180936237020471.png

  • 环境根据智能体选择的动作,向智能体反馈奖励

    1530180947763091372.png


通过合理的学习算法,智能体将在这样的问题设置下,成功学到一个在状态


1530180959024016899.png


选择动作


1530180966720058733.png


的策略


1530180976289090382.png


1.2 计算 Q 值

在我们的项目中,我们要实现基于 Q-Learning 的强化学习算法。Q-Learning 是一个值迭代(Value Iteration)算法。与策略迭代(Policy Iteration)算法不同,值迭代算法会计算每个”状态“或是”状态-动作“的值(Value)或是效用(Utility),然后在执行动作的时候,会设法最大化这个值。因此,对每个状态值的准确估计,是我们值迭代算法的核心。通常我们会考虑最大化动作的长期奖励,即不仅考虑当前动作带来的奖励,还会考虑动作长远的奖励。


在 Q-Learning 算法中,我们把这个长期奖励记为 Q 值,我们会考虑每个 ”状态-动作“ 的 Q 值,具体而言,它的计算公式为:


1530180985028022434.png


也就是对于当前的“状态-动作”


1530180993703033340.png


,我们考虑执行动作


1530181003121030727.png


后环境给我们的奖励


1530181008767097807.png


,以及执行动作


1530181014952059949.png


到达


1530181021050040542.png


后,执行任意动作能够获得的最大的 Q 值


1530181170074019389.png



1530181183293036764.png


为折扣因子。


不过一般地,我们使用更为保守地更新 Q 表的方法,即引入松弛变量 alpha,按如下的公式进行更新,使得 Q 表的迭代变化更为平缓。


1530181055096015203.png


1530181080916012783.png


根据已知条件求


1530181104375035416.png



已知:如上图,机器人位于 s1,行动为 u,行动获得的奖励与题目的默认设置相同。在 s2 中执行各动作的 Q 值为:u: -24,r: -13,d: -0.29、l: +40,γ取 0.9。


1530181116066078997.png


1.3****如何选择动作


在强化学习中,「探索-利用」问题是非常重要的问题。具体来说,根据上面的定义,我们会尽可能地让机器人在每次选择最优的决策,来最大化长期奖励。但是这样做有如下的弊端:


  1. 在初步的学习中,我们的 Q 值会不准确,如果在这个时候都按照 Q 值来选择,那么会造成错误。

  2. 学习一段时间后,机器人的路线会相对固定,则机器人无法对环境进行有效的探索。


因此我们需要一种办法,来解决如上的问题,增加机器人的探索。由此我们考虑使用 epsilon-greedy 算法,即在小车选择动作的时候,以一部分的概率随机选择动作,以一部分的概率按照最优的 Q 值选择动作。同时,这个选择随机动作的概率应当随着训练的过程逐步减小。


在如下的代码块中,实现 epsilon-greedy 算法的逻辑,并运行测试代码。


  1. import random

  2. import operator

  3. actions = [‘u’,‘r’,‘d’,‘l’]

  4. qline = {‘u’:1.2, ‘r’:-2.1, ‘d’:-24.5, ‘l’:27}

  5. epsilon = 0.3 # 以 0.3 的概率进行随机选择

  6. def choose_action(epsilon):

  7. range(100):

  8. print(res)

  9. res = ‘’

  10. for i in range(100):

  11. print(res)

  12. ldllrrllllrlldlldllllllllllddulldlllllldllllludlldllllluudllllllulllllllllllullullllllllldlulllllrlr

Section 2 代码实现

2.1. Maze 类理解

我们首先引入了迷宫类 Maze,这是一个非常强大的函数,它能够根据你的要求随机创建一个迷宫,或者根据指定的文件,读入一个迷宫地图信息。


  1. 使用 Maze("file_name") 根据指定文件创建迷宫,或者使用 Maze(maze_size=(height, width)) 来随机生成一个迷宫。

  2. 使用 trap number 参数,在创建迷宫的时候,设定迷宫中陷阱的数量。

  3. 直接键入迷宫变量的名字按回车,展示迷宫图像(如 g=Maze("xx.txt"),那么直接输入 g 即可。

  4. 建议生成的迷宫尺寸,长在 6~12 之间,宽在 10~12 之间。


在如下的代码块中,创建你的迷宫并展示。


  1. from Maze import Maze

  2. %matplotlib inline

  3. %confer InlineBackend.figure_format = ‘retina’

  4. ## to-do: 创建迷宫并展示

  5. g=Maze(maze_size=(6,8), trap_number=1)

  6. g


1530179816094079444.png


Maze of size (12, 12


)


你可能已经注意到,在迷宫中我们已经默认放置了一个机器人。实际上,我们为迷宫配置了相应的 API,来帮助机器人的移动与感知。其中你随后会使用的两个 API 为 maze.sense_robot() 及 maze.move_robot()。


  1. maze.sense_robot() 为一个无参数的函数,输出机器人在迷宫中目前的位置。

  2. maze.move_robot(direction) 对输入的移动方向,移动机器人,并返回对应动作的奖励值。


随机移动机器人,并记录下获得的奖励,展示出机器人最后的位置。


  1. rewards = []

  2. ## 循环、随机移动机器人 10 次,记录下奖励

  3. for i in range(10):

  4. ## 输出机器人最后的位置

  5. print(g.sense_robot())

  6. ## 打印迷宫,观察机器人位置

  7. g


(0,9)


1530179793744005425.png

2.2. Robot 类实现

Robot 类是我们需要重点实现的部分。在这个类中,我们需要实现诸多功能,以使得我们成功实现一个强化学习智能体。总体来说,之前我们是人为地在环境中移动了机器人,但是现在通过实现 Robot 这个类,机器人将会自己移动。通过实现学习函数,Robot 类将会学习到如何选择最优的动作,并且更新强化学习中对应的参数。


首先 Robot 有多个输入,其中 alpha=0.5, gamma=0.9, epsilon0=0.5 表征强化学习相关的各个参数的默认值,这些在之前你已经了解到,Maze 应为机器人所在迷宫对象。


随后观察 Robot.update 函数,它指明了在每次执行动作时,Robot 需要执行的程序。按照这些程序,各个函数的功能也就明了了。


运行如下代码检查效果(记得将 maze 变量修改为你创建迷宫的变量名)。


  1. import random

  2. import operator

  3. class Robot(object):

  4. # from Robot import Robot

  5. # g=Maze(maze_size=(6,12), trap_number=2)

  6. g=Maze(“test_world\maze_01.txt”)

  7. robot = Robot(g) # 记得将 maze 变量修改为你创建迷宫的变量名

  8. robot.set_status(learning=True,testing=False)

  9. print(robot.update())

  10. g


('d', -0.1)  
复制代码


1530179766935039317.png


Maze of size (12, 12)  
复制代码

2.3 用 Runner 类训练 Robot

在完成了上述内容之后,我们就可以开始对我们 Robot 进行训练并调参了。我们准备了又一个非常棒的类 Runner,来实现整个训练过程及可视化。使用如下的代码,你可以成功对机器人进行训练。并且你会在当前文件夹中生成一个名为 filename 的视频,记录了整个训练的过程。通过观察该视频,你能够发现训练过程中的问题,并且优化你的代码及参数。




尝试利用下列代码训练机器人,并进行调参。可选的参数包括:


  • 训练参数

  • 训练次数 epoch

  • 机器人参数:

  • epsilon0 (epsilon 初值)

  • epsilon衰减(可以是线性、指数衰减,可以调整衰减的速度),你需要在 Robot.py 中调整

  • alpha

  • gamma

  • 迷宫参数:

  • 迷宫大小

  • 迷宫中陷阱的数量

  • ## 可选的参数:

  • epoch = 20

  • epsilon0 = 0.5

  • alpha = 0.5

  • gamma = 0.9

  • maze_size = (6,8)

  • trap_number = 2


  1. from Runner import Runner

  2. g = Maze(maze_size=maze_size,trap_number=trap_number)

  3. r = Robot(g,alpha=alpha, epsilon0=epsilon0, gamma=gamma)

  4. r.set_status(learning=True)

  5. runner = Runner(r, g)

  6. runner.run_training(epoch, display_direction=True)

  7. #runner.generate_movie(filename = “final1.mp4”) # 你可以注释该行代码,加快运行速度,不过你就无法观察到视频了。

  8. g


1530179729275061019.png




使用 runner.plot_results() 函数,能够打印机器人在训练过程中的一些参数信息。


  • Success Times 代表机器人在训练过程中成功的累计次数,这应当是一个累积递增的图像。

  • Accumulated Rewards 代表机器人在每次训练 epoch 中,获得的累积奖励的值,这应当是一个逐步递增的图像。

  • Running Times per Epoch 代表在每次训练 epoch 中,小车训练的次数(到达终点就会停止该 epoch 转入下次训练),这应当是一个逐步递减的图像。


使用 runner.plot_results() 输出训练结果。


  1. runner.plot_results()


1530181321915066661.png


本文转载自宜信技术学院网站。


原文链接:http://college.creditease.cn/detail/148


2020-02-14 10:38977

评论

发布
暂无评论
发现更多内容

netty系列之:netty对SOCKS协议的支持

程序那些事

Java Netty 程序那些事 SOCKS 12月日更

龙智第四次荣登“2021上海软件和信息技术服务业高成长百家”名单

龙智—DevSecOps解决方案

上海软件和信息技术服务业

比特币挖矿与源码解析

恒生LIGHT云社区

比特币 区块链 挖矿

TDinsight——基于Grafana的TDengine零依赖监控解决方案

TDengine

数据库 tdengine 时序数据库 后端技术

读《思辨与立场》-07思维的标准

wood

28天写作 批判性思维 思辨与立场

Sentinel-Go 源码系列(三)滑动时间窗口算法的工程实现

捉虫大师

Go sentinel-go

容器技术正在颠覆传统,重构整个软件世界

巨子嘉

容器 云原生

对话龙智专家,共探DevSecOps实践难点

龙智—DevSecOps解决方案

DevOps DevSecOps

Kubernetes 集群无损升级实践

vivo互联网技术

容器 云原生 服务器集群 Kubernetes 集群

Redisson:这么强大的实现分布式锁框架,你还没有?

华为云开发者联盟

redis 分布式 分布式锁 可重入锁 Redisson框架

【1分钟调研赢好礼】HarmonyOS Connect 视频课堂用户反馈问卷

HarmonyOS开发者

HarmonyOS

超细!细说Zookeeper选举的一个案例(下)

恒生LIGHT云社区

Go golang zookeeper Go 语言

你可能不信,52小时能做出7款超酷产品!

LigaAI

程序员 技术 技术人生 技术分享 hackathon

【紧急】Log4j又发新版2.17.0,只有彻底搞懂漏洞原因,才能以不变应万变,小白也能看懂

Tom弹架构

Java log4j 安全漏洞

书单 | “实战派”系列,每一本都是学好用好一门技术的“航空母舰”

博文视点Broadview

COG云原生优化遥感影像,瓦片切分的最佳实践

华为云开发者联盟

云原生 遥感影像 瓦片切分 云上遥感影像文件 华为云地理遥感平台

Go语言逆向技术:常量字符串

华为云开发者联盟

字符串 go语言 字符 逆向技术 常量字符串

即构科技 RTC 实践与深度解析 | 内容合集

ZEGO即构

音视频 RTC 内容合集 技术实践 技术专题合集

【征集令】寻找2022年鸿蒙智联“出行新爆款产品”

HarmonyOS开发者

HarmonyOS

建木持续集成平台v2.1.0发布

Jianmu

DevOps CI/CD 开源社区

Hive查询的18种方式

编程江湖

大数据 hive

大数据开发hadoop之yarn基础架构详解

@零度

大数据 hadoop YARN

龙智宣布与ConnectALL成为合作伙伴 进一步提升DevOps解决方案水平

龙智—DevSecOps解决方案

DevOps ConnectALL 价值流 价值流管理

前端开发之JS中filter()的使用

@零度

JavaScript 前端开发

先进开发团队,先用 Apifox,做“API 文档先行”理念的先行者!

狐哥说技术

Apifox API swagger API文档

GaussDB(DWS)中共享消息队列实现的三大功能

华为云开发者联盟

线程 数据同步 GaussDB(DWS) 共享消息队列 共享消息

以 Vuex 为引,一窥状态管理全貌

杨成功

JavaScript Vue 大前端 vuex

【LeetCode】在 D 天内送达包裹的能力Java题解

Albert

算法 LeetCode 12月日更

Java开发Excel数据导入mysql的实用小技巧

@零度

Java MySQL

10个比较不错的 JavaScript 库

编程江湖

JavaScript 前端开发

spring 通过xml文件进行依赖注入

田镇珲

Q-learning算法实践_服务革新_杨飞_InfoQ精选文章