写点什么

数据科学家和数据工程师之间到底有什么差别?

  • 2019-04-26
  • 本文字数:1791 字

    阅读完需:约 6 分钟

数据科学家和数据工程师之间到底有什么差别?

我们最近在Reddit上做了 AMA。人们提出的最常见问题是数据科学家和数据工程师之间到底有什么差别。因此,有关这一问题,我们会在这篇文章中深入讨论。



有很多数据专家的岗位,听起来差不多,用的工具也差不多,很难搞清楚到底每个岗位需要做什么工作。另外,规模比较小的公司可能只能招聘有限几个的数据工程师或数据科学家。这意味着在很多情况下,特定的任务和目标可能都需要一个人完成。


这使得很难区分这两种角色。因此,我们会从不同的目标、思维方式、工具和所需的背景来讨论数据工程师和数据科学家的差异。


在讨论之前,我想简单地加一段导语。事实上,许多数据科学家和数据工程师都会执行其他技术性角色的任务。数据科学家可能需要开发ETL,数据工程师可能需要开发 API 和前端。因此,我们以下指出的区别只是为了阐明技术差别在哪里。


目标

数据工程师的目标更关注于任务和开发。数据工程师构建自动化系统和建模数据结构,帮助数据得到有效处理。这代表着数据工程师的目标是创建并开发表和数据管道,以支持用于分析的仪表盘和其他的数据用户(如数据科学家、分析师和其他工程师)。他们的工作和大多数的工程师很类似,要进行大量的设计、假设、约束和开发才能完成最终的任务。每个设计和解决方案也都会有自己的约束,即使它们都可以执行最终的任务。


相对而言,数据科学家更加以问题为中心。就这点而言,他们需要寻找降低成本、增加利润、提升用户体验或业务效率的方法。这代表着他们要先提出问题,然后自己解决问题(提出问题、做出假设、得到结论)。因此他们需要提出这样的问题:什么会影响患者再次入院?如果增加一个类似的A/B测试,客户是否愿意买单?有更快的路线来运送包裹吗?跳过剩余的过程步骤。这里的目标就是找到提出的问题的答案。它可能是最终的结论,也可能会引出更多的问题。在这个过程中,数据科学家需要分析、收集支持信息、得出问题的结论。

工具

这个部分就更加让人感到困惑了。数据科学家和数据工程师都需要依赖于 Python 和 SQL。然而,两个岗位的人使用这些技术的方式是不同的。同样,这也和思维方式的不同息息相关。Python 是非常健壮的语言,它拥有强大的类库来帮助管理操作性任务和分析性任务。


数据科学家会使用 Pandas 和 Scikit Learn 这样的语言,而数据工程师会使用 Python 来管理管道。在这里AirflowLuigi这样的类库就能派上用处。


如上所说,数据科学家的查询将重点关注于问题。但是数据工程师的查询会更关注于数据的清理和转换。


可能这两类数据专家都会使用一些其他的工具,包括TableauJupyter笔记本以及其他工具等。但他们的用法会有所不同。

背景

当讨论数据工程师和数据科学家之间的差别时,另外一个常见的问题是需要什么样的背景。


数据工程师和数据科学家都需要了解数据和编程。即使涉猎不必太广。然而,除了编程之外还有一些差别,特别是对于数据科学家来说。由于数据科学家更像是研究员,如果有基于研究的背景会是加分点。


这可以是在经济学、心理学、流行病学等领域的研究背景。数据科学家可以使用 SQL、Python,具有良好的商业意识,还能将其与自身的研究背景结合起来。这些都不能用级别来衡量。事实上,数据科学家在各个领域都有所涉及。大多数雇主更希望招聘至少硕士学历、具备某些技术或数学研究背景的数据科学家。


而数据工程师就不一定需要硕士学位。数据工程师更像是一个开发人员。比起理论知识,他们需要更多的实践经验。因此,拥有硕士学位并不能说明这一点。

举个例子

比如一家医疗保健公司的主管想知道如何减少初次就诊后 30 天内再入院的患者数量。从数据的角度来看,需要完成一系列工作。


数据科学家需要了解是什么导致了这些患者再入院。这是他们需要回答的问题。根据他们得出的结论,他们会和医院合作,制定指标和政策,帮助改善患者再入院比例。


数据工程师会创建表格,帮助支持数据科学家找到问题的答案,与此同时,他们还要创建分析表,帮助追踪过去和未来的患者再入院指标。这些指标的创建会根据数据科学家得到的答案而改变。


数据科学家和数据工程师有很多的区别。他们有不同的目标、背景,但这就是两者一起合作的价值所在。事实上,数据工程师更关注于构建健壮的系统,这也能方便数据科学家轻松地查询数据,并有效地分析数据。这样的合作就能在数据方面给公司创造价值。


我们希望这篇文章能给你提供帮助!


查看英文原文What Is The Difference Between A Data Engineer And A Data Scientist


2019-04-26 07:005323

评论

发布
暂无评论
发现更多内容

TensorFlow Recommenders: Quickstart

毛显新

深度学习 tensorflow 推荐系统 keras

Java程序员必备框架—Spring全家桶的前世今生详细梳理

北游学Java

Java spring

坐下来谈谈如何写好一份简历?

童欧巴

面试 大前端 简历

小白必看,通俗易懂的LockSupport

程序猿阿星

Java并发 线程协作 LockSupport 线程间通信

云图说 | 华为云医疗智能体,智联大健康,AI药物研发

华为云开发者联盟

AI 药物研发 医疗智能体

数据对AI的重要性:采访首席数据官Rick McFarland - LexisNexis Legal & Professional

BeeWorks

阅读

以两种异步模型应用案例,深度解析Future接口

华为云开发者联盟

Java 模型 异步 FutureTask Future接口

详解Camtasia的PPT录制功能

淋雨

视频剪辑 Camtasia 录屏软件

兰宝环保 | 新体系“行动计划”中化工制药行业VOCs废气治理要点

叶落便知秋

第三届WICC北京落幕 展现开发者服务生态与建设新方向

融云 RongCloud

如何在二三线城市月薪过万(一)看完这篇后端简历优化,包你面试不断

小鲍侃java

面试 后端

男人要慢,SQL要快:记一次慢SQL优化

艾小仙

AI论文解读丨融合视觉、语义、关系多模态信息的文档版面分析架构VSR

华为云开发者联盟

语义 视觉 多模态信息 文档版式 VSR

区块链去中心化钱包开发|开发去中心化钱包

Geek_23f0c3

钱包系统开发 去中心化交易所系统开发 去中心化钱包 去中心化交易所

手把手体验远程开发,确实爽

程序员鱼皮

Java Python 软件 大前端 后端

充满科技感的农业,是年轻人的『菜』吗?

百度大脑

人工智能

教你如何成为解决问题的高手

孙叫兽

高手 解决问题

带你走进“华为链”

华为云开发者联盟

区块链 高性能 华为链 自研区块链平台 自主可控

程序员如何快速成长为IT精英

孙叫兽

程序员 成长 IT职场

Java集合源码总结分析

中易通科技禾禾实验室产品培育田

叶落便知秋

模块三

Winston

模块三作业

河马先生

架构实战营

CloudQuery 首次开放API,v1.4.1将开放「部门导入」和「用户导入」

BinTools图尔兹

数据库 OpenAPI 数据库管控

剖根问底:Java 不能实现真正泛型的原因是什么?

沉默王二

java

INFRA-JOY微服务治理验证工程实践分享

徐敏

微服务 自动化测试 全链路压测 性能压测

Druid 如何开启查询日志

HoneyMoose

Python OpenCV 图像处理之直方图相关知识细节,学点细的

梦想橡皮擦

7月日更

泰国Ascend Money用开源软件加快应用交付

BeeWorks

阅读

3D地图与3D柱状图联合使用

ThingJS数字孪生引擎

大前端 地图 可视化 数字孪生

在线常用crontab表达式大全验证解析

入门小站

工具

数据科学家和数据工程师之间到底有什么差别?_技术管理_Ben Rogojan_InfoQ精选文章