写点什么

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

  • 2019-12-11
  • 本文字数:3057 字

    阅读完需:约 10 分钟

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

今天,我们非常高兴地推出 Amazon SageMaker Processing,这是 Amazon SageMaker 的一项新功能,可让您轻松地在完全托管的基础设施上运行预处理、后处理和模型评估工作负载。


训练准确的机器学习 (ML) 模型需要许多不同的步骤,但没有什么比预处理数据集更重要,例如:


  • 将数据集转换为您所使用的 ML 算法期望的输入格式,

  • 将现有功能转换为更具表现力的表示形式,例如一键编码分类功能,

  • 重新调整或归一化数值特征,

  • 设计高级功能,例如用 GPS 坐标替换邮寄地址,

  • 为自然语言处理应用程序清理和标记文本,

  • 等等!


这些任务包括在数据集上运行定制脚本(我被告知在没有月亮的天空下),并保存处理后的版本,以供以后的培训作业使用。如您所料,对 ML 团队来说,手动运行它们或必须构建和扩展自动化工具的前景并不令人兴奋。对于后处理作业(筛选、整理等)和模型评估作业(针对不同测试集对模型评分)而言,也是如此。


为解决此问题,我们构建了 Amazon SageMaker Processing。下面我来进行更多介绍。


Amazon SageMaker Processing 简介


Amazon SageMaker Processing 推出了新的 Python 开发工具包,使数据科学家和 ML 工程师可以轻松地在 Amazon SageMaker 上运行预处理、后处理和模型评估工作负载。


该开发工具包使用 SageMaker 的内置容器来进行scikit-learn,这可能是最受欢迎的数据集转换库之一。


如果您还需要其他工具,还可以使用自己的 Docker 映像,而不必遵循任何 Docker 映像规范:这为您提供了最大的灵活性,无论是在 SageMaker Processing 还是在 Amazon ECSAmazon Elastic Kubernetes Service 之类的 AWS 容器服务上,甚至在内部,均是如此。


用 scikit-learn 快速演示怎么样? 然后,我将简要讨论如何使用您自己的容器。当然,您可以在 Github 上找到完整的示例。


使用内置的 Scikit-Learn 容器预处理数据


以下是使用 SageMaker Processing 开发工具包来运行 scikit-learn 作业的方法。


首先,让我们创建一个 SKLearnProcessor 对象,传递要使用的 scikit-learn 版本以及对托管基础设施的要求。


Python


from sagemaker.sklearn.processing import SKLearnProcessorsklearn_processor = SKLearnProcessor(framework_version='0.20.0',                                     role=role,                                     instance_count=1,                                     instance_type='ml.m5.xlarge')
复制代码


然后,我们可以像下面这样,运行预处理脚本(稍后将介绍更多有关该操作的内容):


  • 数据集 (dataset.csv) 将自动复制到目标目录 (/input) 下的容器内。如果需要,我们会添加其他输入。

  • 这是 Python 脚本 (preprocessing.py) 读取它的位置。我们也可以将命令行参数传递给脚本。

  • 脚本对命令行进行预处理,将其分为三种方式,然后将文件保存在容器中的 /opt/ml/processing/output/train/opt/ml/processing/output/validation/opt/ml/processing/output/test 下。

  • 作业完成后,所有输出将自动复制到 S3 中的默认 SageMaker 存储桶。


Python


from sagemaker.processing import ProcessingInput, ProcessingOutputsklearn_processor.run(    code='preprocessing.py',    # arguments = ['arg1', 'arg2'],    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input')],    outputs=[ProcessingOutput(source='/opt/ml/processing/output/train'),        ProcessingOutput(source='/opt/ml/processing/output/validation'),        ProcessingOutput(source='/opt/ml/processing/output/test')])
复制代码


就这么简单! 让我们通过查看预处理脚本的框架将所有内容放在一起。


Python


import pandas as pdfrom sklearn.model_selection import train_test_split# Read data locally df = pd.read_csv('/opt/ml/processing/input/dataset.csv')# Preprocess the data setdownsampled = apply_mad_data_science_skills(df)# Split data set into training, validation, and testtrain, test = train_test_split(downsampled, test_size=0.2)train, validation = train_test_split(train, test_size=0.2)# Create local output directoriestry:    os.makedirs('/opt/ml/processing/output/train')    os.makedirs('/opt/ml/processing/output/validation')    os.makedirs('/opt/ml/processing/output/test')except:    pass# Save data locallytrain.to_csv("/opt/ml/processing/output/train/train.csv")validation.to_csv("/opt/ml/processing/output/validation/validation.csv")test.to_csv("/opt/ml/processing/output/test/test.csv")print('Finished running processing job')
复制代码


快速浏览 S3 存储桶,确认文件已成功处理并保存。现在,我可以将它们直接用作 SageMaker 培训作业的输入。


$ aws s3 ls --recursive s3://sagemaker-us-west-2-123456789012/sagemaker-scikit-learn-2019-11-20-13-57-17-805/output


2019-11-20 15:03:22 19967 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/test.csv


2019-11-20 15:03:22 64998 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/train.csv


2019-11-20 15:03:22 18058 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/validation.csv


现在如何使用自己的容器?


使用自己的容器处理数据


比如说您想使用热门的 spaCy 库预处理文本数据。您可以使用以下方法为其定义一个普通 Docker 容器。


Bash


FROM python:3.7-slim-buster# Install spaCy, pandas, and an english language model for spaCy.RUN pip3 install spacy==2.2.2 && pip3 install pandas==0.25.3RUN python3 -m spacy download en_core_web_md# Make sure python doesn't buffer stdout so we get logs ASAP.ENV PYTHONUNBUFFERED=TRUEENTRYPOINT ["python3"]
复制代码


然后,您可以构建 Docker 容器,在本地进行测试,然后将其推送到我们的托管 Docker 注册表服务 Amazon Elastic Container Registry


下一步,可以使用 ScriptProcessor 对象配置处理作业,并传递您已构建和推送的容器的名称。


Python


from sagemaker.processing import ScriptProcessorscript_processor = ScriptProcessor(image_uri='123456789012.dkr.ecr.us-west-2.amazonaws.com/sagemaker-spacy-container:latest',                role=role,                instance_count=1,                instance_type='ml.m5.xlarge')
复制代码


最后,您可以像前面的示例一样运行该作业。


Python


script_processor.run(code='spacy_script.py',    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input_data')],    outputs=[ProcessingOutput(source='/opt/ml/processing/processed_data')],    arguments=['tokenizer', 'lemmatizer', 'pos-tagger'])
复制代码


其余过程与上述过程完全相同:将输入复制到容器内部,将输出从容器复制到 S3


很简单,对不对? 同样,我专注的是预处理,但是您可以运行类似的任务进行后处理和模型评估。不要忘记查看 Github 中的示例。


现已推出!


Amazon SageMaker Processing 现已在提供 Amazon SageMaker 的所有商业区域中推出。


请试一试,并通过 Amazon SageMakerAWS 论坛或您常用的 AWS Support 联系方式向我们发送反馈。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/


2019-12-11 15:35757

评论

发布
暂无评论
发现更多内容

华为云数据库内核专家为您揭秘:GaussDB(for MySQL)并行查询有多快?

华为云数据库小助手

GaussDB 华为云数据库 GaussDB(for MySQL)

Alibaba内网“疯狂”传阅的P8开源出的SpringBoot入门到进阶小册

Java~~~

Java spring 架构 面试 Spring Boot

铁山靠!阿里P9架构师写的这份JDK源码笔记,竟直接带火了GitHub

Java~~~

Java 架构 jdk 面试 架构师

模块六作业:拆分电商系统为微服务

Felix

阿里的新“宠儿”!终于有人总结出了Spring源码从初级到高级手册

Java~~~

Java spring 架构 面试 Spring Cloud

Github星标百万!终于有人将Spring技术精髓收录成册

Java 编程 架构 面试 架构师

GitHub上这份阿里的Java高并发核心手册,即使再过20年依然“NB”

Java~~~

Java 架构 面试 分布式 高并发

逮虾户!清华架构师吐血整理出这份多线程并发指南,带你弯道超车

Java~~~

Java 架构 面试 分布式 多线程

一种单机支持 JavaWeb 容器万级并发的设想

Java 编程 程序员 面试

JAVA应用生产问题排查步骤

Java 编程 架构 程序人生 架构师

少侠留步!赠你一份阿里内部广为流传的23种设计模式核心笔记

Java~~~

Java 架构 面试 分布式 架构师

细节炸裂!阿里P8高管总结出这份1500页的Java编程思想(第六版)

Java~~~

Java 编程 架构 面试 网络

基于语音情感识别的应用和挑战,详解华为云的语音情感识别方案

华为云开发者联盟

学习 语音 情感识别 跨模态知识迁移 跨模态

CC校园运动小程序云开发解决方案

CC同学

成为高效工程师的四步法则

俞凡

生产力 认知

牛掰!“基础-中级-高级”Java程序员面试集结,看完献出我的膝盖

Java 编程 程序员 架构 面试

全网震动!阿里员工人手一份却禁止外传的P5-P9Java进阶学习路线

Java~~~

Java 架构 面试 分布式 高并发

通过wireshark体验IP层分包

她的男人是程序员

阿里的新“宠儿”!终于有人总结出了Spring源码从初级到高级手册

Java架构追梦

Java spring 阿里巴巴 架构 面试

在PyQt中构建 Python 菜单栏、菜单和工具栏

华为云开发者联盟

Python

如何使用TCP/IP开发网络程序

华为云开发者联盟

Java TCP 网络协议 通信 客户端

fil矿机挖矿收益怎么计算?fil矿机挖矿效率怎么提升?

fil矿机挖矿收益怎么计算 fil矿机挖矿效率怎么提升

量化机器人软件开发|自动交易机器人

量化系统19942438797

机器人 量化交易

Java全家桶的这些知识,不用学了

Java 架构 后端 计算机

醍醐灌顶Nginx 原理和架构

hanaper

Linux如何进行GPIO读写操作的?

华为云开发者联盟

Linux value GPIO GPIO开发 sysfs

ipfs是什么项目是国家许可的吗?ipfs国家认可吗?

IPFS国家认可吗 ipfs是什么项目 ipfs是国家许可的吗

面试过程中,遇到刁钻问题大家是怎么处理的?

hanaper

不可错过的mysql,redis,nginx视频讲解

hanaper

靶向蛋白质组技术研发进入快车道,北鲲云超算为技术顺利推进提供有力支撑

北鲲云

在阿里离职后,从内部带走的这份485页面试合集,在GitHub上火了

Java~~~

Java 架构 面试 架构师

Amazon SageMaker Processing – 完全托管的数据处理和模型评估_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章