写点什么

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

  • 2019-12-11
  • 本文字数:3057 字

    阅读完需:约 10 分钟

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

今天,我们非常高兴地推出 Amazon SageMaker Processing,这是 Amazon SageMaker 的一项新功能,可让您轻松地在完全托管的基础设施上运行预处理、后处理和模型评估工作负载。


训练准确的机器学习 (ML) 模型需要许多不同的步骤,但没有什么比预处理数据集更重要,例如:


  • 将数据集转换为您所使用的 ML 算法期望的输入格式,

  • 将现有功能转换为更具表现力的表示形式,例如一键编码分类功能,

  • 重新调整或归一化数值特征,

  • 设计高级功能,例如用 GPS 坐标替换邮寄地址,

  • 为自然语言处理应用程序清理和标记文本,

  • 等等!


这些任务包括在数据集上运行定制脚本(我被告知在没有月亮的天空下),并保存处理后的版本,以供以后的培训作业使用。如您所料,对 ML 团队来说,手动运行它们或必须构建和扩展自动化工具的前景并不令人兴奋。对于后处理作业(筛选、整理等)和模型评估作业(针对不同测试集对模型评分)而言,也是如此。


为解决此问题,我们构建了 Amazon SageMaker Processing。下面我来进行更多介绍。


Amazon SageMaker Processing 简介


Amazon SageMaker Processing 推出了新的 Python 开发工具包,使数据科学家和 ML 工程师可以轻松地在 Amazon SageMaker 上运行预处理、后处理和模型评估工作负载。


该开发工具包使用 SageMaker 的内置容器来进行scikit-learn,这可能是最受欢迎的数据集转换库之一。


如果您还需要其他工具,还可以使用自己的 Docker 映像,而不必遵循任何 Docker 映像规范:这为您提供了最大的灵活性,无论是在 SageMaker Processing 还是在 Amazon ECSAmazon Elastic Kubernetes Service 之类的 AWS 容器服务上,甚至在内部,均是如此。


用 scikit-learn 快速演示怎么样? 然后,我将简要讨论如何使用您自己的容器。当然,您可以在 Github 上找到完整的示例。


使用内置的 Scikit-Learn 容器预处理数据


以下是使用 SageMaker Processing 开发工具包来运行 scikit-learn 作业的方法。


首先,让我们创建一个 SKLearnProcessor 对象,传递要使用的 scikit-learn 版本以及对托管基础设施的要求。


Python


from sagemaker.sklearn.processing import SKLearnProcessorsklearn_processor = SKLearnProcessor(framework_version='0.20.0',                                     role=role,                                     instance_count=1,                                     instance_type='ml.m5.xlarge')
复制代码


然后,我们可以像下面这样,运行预处理脚本(稍后将介绍更多有关该操作的内容):


  • 数据集 (dataset.csv) 将自动复制到目标目录 (/input) 下的容器内。如果需要,我们会添加其他输入。

  • 这是 Python 脚本 (preprocessing.py) 读取它的位置。我们也可以将命令行参数传递给脚本。

  • 脚本对命令行进行预处理,将其分为三种方式,然后将文件保存在容器中的 /opt/ml/processing/output/train/opt/ml/processing/output/validation/opt/ml/processing/output/test 下。

  • 作业完成后,所有输出将自动复制到 S3 中的默认 SageMaker 存储桶。


Python


from sagemaker.processing import ProcessingInput, ProcessingOutputsklearn_processor.run(    code='preprocessing.py',    # arguments = ['arg1', 'arg2'],    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input')],    outputs=[ProcessingOutput(source='/opt/ml/processing/output/train'),        ProcessingOutput(source='/opt/ml/processing/output/validation'),        ProcessingOutput(source='/opt/ml/processing/output/test')])
复制代码


就这么简单! 让我们通过查看预处理脚本的框架将所有内容放在一起。


Python


import pandas as pdfrom sklearn.model_selection import train_test_split# Read data locally df = pd.read_csv('/opt/ml/processing/input/dataset.csv')# Preprocess the data setdownsampled = apply_mad_data_science_skills(df)# Split data set into training, validation, and testtrain, test = train_test_split(downsampled, test_size=0.2)train, validation = train_test_split(train, test_size=0.2)# Create local output directoriestry:    os.makedirs('/opt/ml/processing/output/train')    os.makedirs('/opt/ml/processing/output/validation')    os.makedirs('/opt/ml/processing/output/test')except:    pass# Save data locallytrain.to_csv("/opt/ml/processing/output/train/train.csv")validation.to_csv("/opt/ml/processing/output/validation/validation.csv")test.to_csv("/opt/ml/processing/output/test/test.csv")print('Finished running processing job')
复制代码


快速浏览 S3 存储桶,确认文件已成功处理并保存。现在,我可以将它们直接用作 SageMaker 培训作业的输入。


$ aws s3 ls --recursive s3://sagemaker-us-west-2-123456789012/sagemaker-scikit-learn-2019-11-20-13-57-17-805/output


2019-11-20 15:03:22 19967 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/test.csv


2019-11-20 15:03:22 64998 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/train.csv


2019-11-20 15:03:22 18058 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/validation.csv


现在如何使用自己的容器?


使用自己的容器处理数据


比如说您想使用热门的 spaCy 库预处理文本数据。您可以使用以下方法为其定义一个普通 Docker 容器。


Bash


FROM python:3.7-slim-buster# Install spaCy, pandas, and an english language model for spaCy.RUN pip3 install spacy==2.2.2 && pip3 install pandas==0.25.3RUN python3 -m spacy download en_core_web_md# Make sure python doesn't buffer stdout so we get logs ASAP.ENV PYTHONUNBUFFERED=TRUEENTRYPOINT ["python3"]
复制代码


然后,您可以构建 Docker 容器,在本地进行测试,然后将其推送到我们的托管 Docker 注册表服务 Amazon Elastic Container Registry


下一步,可以使用 ScriptProcessor 对象配置处理作业,并传递您已构建和推送的容器的名称。


Python


from sagemaker.processing import ScriptProcessorscript_processor = ScriptProcessor(image_uri='123456789012.dkr.ecr.us-west-2.amazonaws.com/sagemaker-spacy-container:latest',                role=role,                instance_count=1,                instance_type='ml.m5.xlarge')
复制代码


最后,您可以像前面的示例一样运行该作业。


Python


script_processor.run(code='spacy_script.py',    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input_data')],    outputs=[ProcessingOutput(source='/opt/ml/processing/processed_data')],    arguments=['tokenizer', 'lemmatizer', 'pos-tagger'])
复制代码


其余过程与上述过程完全相同:将输入复制到容器内部,将输出从容器复制到 S3


很简单,对不对? 同样,我专注的是预处理,但是您可以运行类似的任务进行后处理和模型评估。不要忘记查看 Github 中的示例。


现已推出!


Amazon SageMaker Processing 现已在提供 Amazon SageMaker 的所有商业区域中推出。


请试一试,并通过 Amazon SageMakerAWS 论坛或您常用的 AWS Support 联系方式向我们发送反馈。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/


2019-12-11 15:35667

评论

发布
暂无评论
发现更多内容

聊聊Java运算符的那些事

Bob

Java 9月日更

【Flutter 专题】51图解动画小插曲之 Flare 动画

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 9月日更

观测未来,携手同行!驻云诚邀您参加2021 OSCAR 开源产业大会!文末报名福利!

观测云

开源 可观测

一分钟带你了解Huawei LiteOS组件开发指南

华为云开发者联盟

curl 内核 组件 Huawei LiteOS 组件开发

Vue进阶(幺零五):elementUI 实现表格行列拖拽

No Silver Bullet

Vue 9月日更

有个码龄 10 年的程序员跟我说:“他编程从来不用鼠标”,我说:

梦想橡皮擦

9月日更

深入理解rtmp(二)之C++脚手架搭建

轻口味

android 音视频 直播 RTMP 9月日更

【LeetCode】找到需要补充粉笔的学生编号Java题解

Albert

算法 LeetCode 9月日更

Jira API的踩坑记

FunTester

接口测试 API Jira FunTester 缺陷管理

重放浏览器单个请求性能测试实践

FunTester

性能测试 接口测试 测试框架 测试开发 FunTester

一次带宽拉满引发的百分百超时血案!

Gopher指北

Go 语言

计算机工业的生态链(二)

姬翔

9月日更

Golang 中的整洁架构

baiyutang

架构 DDD Go 语言 9月日更

Rust 从 0 到 1

rust

手撸二叉树之二叉树的所有路径

HelloWorld杰少

9月日更

15. 弱人工智能、强人工智能、超人工智能

Databri_AI

人工智能

让Chrome爽到飞起的5款小众插件!

Jackpop

缓存核心知识小抄,面试必备,赶紧收藏!

博文视点Broadview

代码工具:VSCode

正向成长

vscode

TDSQL(MySQL版)之DB组件升级

腾讯云数据库

数据库 tdsql

数据库连接池

邱学喆

TDSQL分布式数据库的HDFS和LOCAL备份配置

腾讯云数据库

数据库 tdsql

Python代码阅读(第26篇):将列表映射成字典

Felix

Python 编程 Code Programing 阅读代码

为什么 Golang 正在接管软件行业

云原生

云计算 Kubernetes 云原生 编程语言 Go 语言

编程基础:硬件同步原语

正向成长

CAS 硬件同步原语 FAA

解决网卡“Device eth0 does not seem to be present, delaying initialization”

耳东@Erdong

9月日更 网卡

什么是可中断锁?有什么用?怎么实现?

王磊

9月日更

Java从入门到升仙的书单推荐,附带读书笔记

Silently9527

Java书籍推荐 Java进阶书籍推荐 Mysql读书笔记

云随想一:企业为什么要上云?

FLASH

原生云

官方披露 TDSQL 十年自主可控之路

腾讯云数据库

数据库 tdsql

WGCLOUD新特性,新增指令下发批量执行能力

王逅逅

DevOps Grafana #zabbix linux面板 linux监测

Amazon SageMaker Processing – 完全托管的数据处理和模型评估_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章