今天,我们非常高兴地推出 Amazon SageMaker Processing,这是 Amazon SageMaker 的一项新功能,可让您轻松地在完全托管的基础设施上运行预处理、后处理和模型评估工作负载。
训练准确的机器学习 (ML) 模型需要许多不同的步骤,但没有什么比预处理数据集更重要,例如:
将数据集转换为您所使用的 ML 算法期望的输入格式,
将现有功能转换为更具表现力的表示形式,例如一键编码分类功能,
重新调整或归一化数值特征,
设计高级功能,例如用 GPS 坐标替换邮寄地址,
为自然语言处理应用程序清理和标记文本,
等等!
这些任务包括在数据集上运行定制脚本(我被告知在没有月亮的天空下),并保存处理后的版本,以供以后的培训作业使用。如您所料,对 ML 团队来说,手动运行它们或必须构建和扩展自动化工具的前景并不令人兴奋。对于后处理作业(筛选、整理等)和模型评估作业(针对不同测试集对模型评分)而言,也是如此。
为解决此问题,我们构建了 Amazon SageMaker Processing。下面我来进行更多介绍。
Amazon SageMaker Processing 简介
Amazon SageMaker Processing 推出了新的 Python 开发工具包,使数据科学家和 ML 工程师可以轻松地在 Amazon SageMaker 上运行预处理、后处理和模型评估工作负载。
该开发工具包使用 SageMaker 的内置容器来进行scikit-learn,这可能是最受欢迎的数据集转换库之一。
如果您还需要其他工具,还可以使用自己的 Docker 映像,而不必遵循任何 Docker 映像规范:这为您提供了最大的灵活性,无论是在 SageMaker Processing 还是在 Amazon ECS 和Amazon Elastic Kubernetes Service 之类的 AWS 容器服务上,甚至在内部,均是如此。
用 scikit-learn 快速演示怎么样? 然后,我将简要讨论如何使用您自己的容器。当然,您可以在 Github 上找到完整的示例。
使用内置的 Scikit-Learn 容器预处理数据
以下是使用 SageMaker Processing 开发工具包来运行 scikit-learn 作业的方法。
首先,让我们创建一个 SKLearnProcessor
对象,传递要使用的 scikit-learn 版本以及对托管基础设施的要求。
Python
然后,我们可以像下面这样,运行预处理脚本(稍后将介绍更多有关该操作的内容):
数据集 (
dataset.csv
) 将自动复制到目标目录 (/input
) 下的容器内。如果需要,我们会添加其他输入。这是 Python 脚本 (
preprocessing.py
) 读取它的位置。我们也可以将命令行参数传递给脚本。脚本对命令行进行预处理,将其分为三种方式,然后将文件保存在容器中的
/opt/ml/processing/output/train
、/opt/ml/processing/output/validation
和/opt/ml/processing/output/test
下。
Python
就这么简单! 让我们通过查看预处理脚本的框架将所有内容放在一起。
Python
快速浏览 S3 存储桶,确认文件已成功处理并保存。现在,我可以将它们直接用作 SageMaker 培训作业的输入。
$ aws s3 ls --recursive s3://sagemaker-us-west-2-123456789012/sagemaker-scikit-learn-2019-11-20-13-57-17-805/output
2019-11-20 15:03:22 19967 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/test.csv
2019-11-20 15:03:22 64998 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/train.csv
2019-11-20 15:03:22 18058 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/validation.csv
现在如何使用自己的容器?
使用自己的容器处理数据
比如说您想使用热门的 spaCy 库预处理文本数据。您可以使用以下方法为其定义一个普通 Docker 容器。
Bash
然后,您可以构建 Docker 容器,在本地进行测试,然后将其推送到我们的托管 Docker 注册表服务 Amazon Elastic Container Registry。
下一步,可以使用 ScriptProcessor
对象配置处理作业,并传递您已构建和推送的容器的名称。
Python
最后,您可以像前面的示例一样运行该作业。
Python
其余过程与上述过程完全相同:将输入复制到容器内部,将输出从容器复制到 S3。
很简单,对不对? 同样,我专注的是预处理,但是您可以运行类似的任务进行后处理和模型评估。不要忘记查看 Github 中的示例。
现已推出!
Amazon SageMaker Processing 现已在提供 Amazon SageMaker 的所有商业区域中推出。
请试一试,并通过 Amazon SageMaker 的 AWS 论坛或您常用的 AWS Support 联系方式向我们发送反馈。
本文转载自 AWS 技术博客。
评论