把握行业变革关键节点,12 月 19 日 - 20 日,AICon北京站即将重磅启幕! 了解详情
写点什么

国际机器学习顶会 ICML,我们来了!

  • 2019-08-26
  • 本文字数:1392 字

    阅读完需:约 5 分钟

国际机器学习顶会ICML,我们来了!

当地时间 6 月 9 日,机器学习领域最具影响力的学术会议之一 ICML 2019 在美国长滩隆重开幕。在本次 ICML 上,支付宝展示了多篇入选论文成果,并在 6 月 9 日举行了专家云集的主题 workshop,现场与各位学者专家探讨了前沿金融智能技术和应用的发展。



据了解,本次 workshop 围绕金融智能展开,会上 AI 专家围绕金融智能应用实践、“小数据”、数据隐私安全等焦点问题进行了演讲分享,助力行业解决人工智能+金融融合创新中的技术难题。


workshop 结束后,仍有大批专家学者们留在现场热情交流。



而论文方面,本届 ICML 支付宝 AI 技术团队贡献了多篇论文研究成果,包括提出了用生成对抗用户模型来解决强化学习小样本的问题,并将此方法用在推荐系统的优化中;引入了分布梯度时序插分学习,在分布强化学习的基础上开辟了新的方向;提出了粒子流贝叶斯定理(particle flow Bayes’Rule)算法,实现对高维贝叶斯推理的精确度的提升优化等。


以下我们精选了其中 3 篇为大家介绍,分享支付宝 AI 在金融服务领域的最新研究:

Adversarial User Model for Reinforcement Learning BasedRecommendation System

简介:将强化学习(RL)用于推荐系统,能更好地考虑用户的长期效益,从而保持用户在平台中的长期满意度、活跃度。但是,强化学习需要大量训练样本。在这篇论文中,我们提出用生成对抗用户模型(GAN user model)作为强化学习的模拟环境,先在此模拟环境中进行线下训练,再根据线上用户反馈进行即时策略更新,以此实现对线上训练样本需求的极大降低。

Nonlinear distributional gradient temporal differencelearning

简介:我们在该篇论文中引入了分布梯度时序插分学习(distributional gradient temporal difference learnig)。近年来分布强化学习例如 DeepMind 的 c51 算法引起了学术界的广泛注意。相较于传统的强化学习算法,分布强化学习考虑到长期奖励(long term reward)的分布信息,使得其具有学习过程更稳定,收敛速度更快的优点。但是与神经网络相结合以及使用 off-policy 学习后,分布强化学习的收敛性依旧难以得到保证。因此我们将分布强化学习与梯度时序插分学习相结合,提出了 Distributional Mean Squared Bellman Error 做为我们的优化目标函数。该研究为分布强化学习提供了理论保障同时在其基础上开辟了新的研究方向。

Particle Flow Bayes Rule

简介:贝叶斯推理(Bayesian Inference)在高维问题中,由于高维积分带来一系列的计算和精度问题,计算后验概率(posterior)是一个重大挑战。除此之外,在许多现实的问题中,观测数据(observations)按顺序依次到达,贝叶斯推断需要反复迭代使用:在观察一些数据后得到的后验概率可以当作新的先验概率,再根据新的数据得到新的后验概率。这种问题需要算法能在不储存大量历史数据的情况下,在线执行快速、有效的贝叶斯更新(Bayesian updating)。为解决这一具有挑战性的问题,我们提出了粒子流贝叶斯定理(particle flow Bayes’ Rule),这是一个基于常微分方程(ODE)的贝叶斯算子。我们在几个经典、高维实验中展示了通过 meta learning 训练得到的粒子流贝叶斯算子(particle flowBayes’ Rule)的有效性以及泛化能力。尤其在高纬问题中,我们提出的算法对后验的估算比已有的算法在精确度以及计算效率上有明显的优势。


本文转载自公众号蚂蚁金服科技(ID:Ant-Techfin)。


原文链接:


https://mp.weixin.qq.com/s/ISfL892oqYjc-eGMYwhUqw


2019-08-26 10:561258
用户头像

发布了 150 篇内容, 共 39.9 次阅读, 收获喜欢 38 次。

关注

评论

发布
暂无评论
发现更多内容

一周信创舆情观察(11.1~11.7)

统小信uos

阿里技术3面+HR面,奋战两个月,终斩获offer定级阿里P6+

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正(1)

Java 程序员 后端

阿里P8面试官梳理的2020年999道大厂高频Java面试题(附答案)

Java 程序员 后端

阿里一面,给了几条SQL,问需要执行几次树搜索操作?

Java 程序员 后端

用JavaScript访问SAP云平台上的服务遇到跨域问题该怎么办

汪子熙

JavaScript SAP 11月日更 SAP微信集成

阿里五面(4轮技术+HR)成功逆袭,面经分享

Java 程序员 后端

阿里二面被问16道 volatile 问题,玩命补充jvm、多线程、高并发

Java 程序员 后端

阿里员工感慨:码农们过去暴富有多轻松,现在赚钱就有多辛苦!

Java 程序员 后端

鸿蒙轻内核源码分析:虚拟内存

华为云开发者联盟

鸿蒙 内存 虚拟内存 OpenHarmony 轻内核

阿里三面:CAP和BASE理论了解么?可以结合实际案例说下?

Java 程序员 后端

技术为本,中科柏诚致力于打造高效供应链金融平台

联营汇聚

阿里亿级长连网关的云原生演进之路

Java 程序员 后端

阿里内部疯传的分布式架构手册,轻松吊打小日子过的不错的面试官

Java 程序员 后端

阿里内部绝密Java面试笔记(珠峰版),冒着被开的风险免费分享

Java 程序员 后端

助力数字孪生,TDengine在叁零肆零仿真平台中的实践

TDengine

数据库 tdengine 后端

阿里大师推荐的这份Java开发必读书单,让我成功在寒冬中站稳脚步

Java 程序员 后端

阿里技术官亲手总结Part 10个知识点!主动分享!收藏必备!

Java 程序员 后端

阿里技术总监纯手打的内部手册《MySQL笔记》真是太硬核了

Java 程序员 后端

阿里程序员:入职才两个月,我决定离职

Java 程序员 后端

阿里Redis最全面试全攻略,读完这个就可以和阿里面试官好好聊聊

Java 程序员 后端

使用Eclipse连接SAP云平台上的HANA数据库实例

汪子熙

数据库 Cloud SAP 11月日更

阿里又一个“逆天”容器框架!这本Kubernetes进阶手册简直太全了

Java 程序员 后端

阿里巴巴蚂蚁金服Java面试经历包含答案解析

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正

Java 程序员 后端

阿里一面就凉了:MySQL+多线程+Redis+算法

Java 程序员 后端

阿里三面面试题:分布式服务注册中心该如何选型?我快哭了

Java 程序员 后端

阿里大牛看了也要膜拜的大话代码架构(项目实战版)终于出来了

Java 程序员 后端

阿里巴巴内部涨薪必备的“王者级Dubbo实战笔记”,不啃透不下班

Java 程序员 后端

阿里架构师剖析程序运行原理,程序是如何运行又是如何崩溃的?

Java 程序员 后端

国际机器学习顶会ICML,我们来了!_文化 & 方法_Geek_cb7643_InfoQ精选文章