AICon上海|与字节、阿里、腾讯等企业共同探索Agent 时代的落地应用 了解详情
写点什么

三次成功挑战目标跟踪算法极限,商汤开源 SiamRPN 系列算法

  • 2019-05-24
  • 本文字数:2988 字

    阅读完需:约 10 分钟

三次成功挑战目标跟踪算法极限,商汤开源SiamRPN系列算法

商汤科技智能视频团队首次开源其目标跟踪研究平台 PySOT。PySOT 包含了商汤科技 SiamRPN 系列算法,以及刚被 CVPR2019 收录为 Oral 的 SiamRPN++。此篇文章将独家解读目标跟踪最强算法 SiamRPN 系列。

背景

由于存在遮挡、光照变化、尺度变化等一些列问题,单目标跟踪的实际落地应用一直都存在较大的挑战。过去两年中,商汤智能视频团队在孪生网络上做了一系列工作,包括将检测引入跟踪后实现第一个高性能孪生网络跟踪算法的 SiamRPN(CVPR 18),更好地利用训练数据增强判别能力的 DaSiamRPN(ECCV 18),以及最新的解决跟踪无法利用到深网络问题的 SiamRPN++(CVPR 19)。其中 SiamRPN++在多个数据集上都完成了 10%以上的超越,并且达到了 SOTA 水平,是当之无愧的目标跟踪最强算法。


开源项目地址:https://github.com/STVIR/pysot



以上动图中,红色框是 SiamRPN++的跟踪效果,蓝色框是 ECCV 2018 上的 UPDT 的结果,可以看出 SiamRPN++的效果更佳,跟踪效果更稳定,框也更准。从这个图也可以看出跟踪的一些挑战:光照急剧变化,形状、大小变化等。

SiamRPN (CVPR18 Spotlight)

在 CVPR18 的论文中(SiamRPN),商汤智能视频团队发现孪生网络无法对跟踪目标的形状进行调节。之前的跟踪算法更多的将跟踪问题抽象成比对问题,但是跟踪问题其实和检测问题也非常类似,对目标的定位与对目标框的回归预测一样重要。


研究人员分析了以往跟踪算法的缺陷并对其进行改进:


  1. 大多数的跟踪算法把跟踪考虑成定位问题,但它和检测问题也比较类似,对目标的定位和对目标边界框的回归预测一样重要。为此,SiamRPN 将跟踪问题抽象成单样本检测问题,即需要设计一个算法,使其能够通过第一帧的信息来初始化的一个局部检测器。为此,SiamRPN 结合了跟踪中的孪生网络和检测中的区域推荐网络:孪生网络实现对跟踪目标的适应,让算法可以利用被跟踪目标的信息,完成检测器的初始化;区域推荐网络可以让算法可以对目标位置进行更精准的预测。经过两者的结合,SiamRPN 可以进行端到端的训练。

  2. 以往的滤波类的方法,没办法通过数据驱动的形式提升跟踪的性能。而 SiamRPN 可以端到端训练,所以更大规模的数据集 Youtube-BB 也被引入到了训练中,通过数据驱动的形式提升最终的性能。



结合以上两点创新,在基线算法 SiamFC 的基础上,SiamRPN 实现了五个点以上的提升(OTB100,VOT15/16/17 数据集);同时还达到了更快的速度(160fps)、也更好地实现了精度与速度的平衡。

DaSiamRPN (ECCV18)

SiamRPN 虽然取得了非常好的性能,但由于训练集问题,物体类别过少限制了跟踪的性能;同时,在之前的训练方式中,负样本只有背景信息,一定程度上也限制了网络的判别能力,网络只具备区分前景与不含语义的背景的能力。


基于这两个问题,DaSiamRPN 设计了两种数据增强方式:


  1. 孪生网络的训练只需要图像对,而并非完整的视频,所以检测图片也可以被扩展为训练数据。更准确的来说,通过对检测数据集进行数据增强,生成可用于训练的图片对。因此在 DaSiamRPN 中,COCO 和 ImageNet Det 也被引入了训练,极大地丰富了训练集中的类别信息。同时,数据量增大的本身也带来了性能上的提升。

  2. 在孪生网络的训练过程中,通过构造有语意的负样本对来增强跟踪器的判别能力,即训练过程中不再让模板和搜索区域是相同目标;而是让网络学习判别能力,去寻找搜索区域中和模版更相似的物体,而并非一个简单的有语义的物体。



经过上述的改进,网络的判别能力变得更强,检测分数也变得更有辨别力,这样就可以根据检测分数判断目标是否消失。基于此,DaSiamRPN 可以将短时跟踪拓展到长时跟踪,并且在 UAV20L 数据集上比之前最好的方法提高了 6 个点。在 ECCV18 的 VOT workshop 上面,DaSiamRPN 取得了实时比赛的冠军,相比去年的冠军有了 80%的提升。

SiamRPN++ (CVPR19 Oral)

目前,孪生网络中的核心问题在于现有的孪生网络目标跟踪算法只能用比较浅的卷积网络(如 AlexNet),无法利用现代化网络为跟踪算法提升精度,而直接引入深网络甚至会使性能大幅衰减。


为了解决深网络这个 Siamese 跟踪器的痛点,商汤智能视频团队基于之前 ECCV2018 的工作(DaSiamRPN),通过分析孪生神经网络训练过程,发现孪生网络在使用现代化深度神经网络存在位置偏见问题,而这一问题是由于卷积的 padding 会破坏严格的平移不变性。然而深网络并不能去掉 padding,为了缓解这一问题,让深网络能够在跟踪提升性能,SiamRPN++中提出在训练过程中加入位置均衡的采样策略。通过修改采样策略来缓解网络在训练过程中的存在的位置偏见问题,让深网络能够发挥出应有的效果。



通过加入这一采样策略,深层网络终于能够在跟踪任务中发挥作用,让跟踪的性能不再受制于网络的容量。同时,为了更好地发挥深层网络的性能,SiamRPN++中利用了多层融合。由于浅层特征具有更多的细节信息,而深层网络具有更多的语义信息,将多层融合起来以后,可以跟踪器兼顾细节和深层语义信息,从而进一步提升性能。


除此之外,研究人员还提出了新的连接部件,深度可分离相关层(Depthwise Correlation,后续简写为 DW)。相比于之前的升维相关层(UpChannel correlation,后续简写为 UP),DW 可以极大地简化参数量,平衡两支的参数量,同时让训练更加稳定,也能更好的收敛。



为了验证以上提出的内容,研究人员做了详细的实验。在比较常用的 VOT 和 OTB 数据集上,SiamRPN++取得了 SOTA 的结果。在 VOT18 的长时跟踪,以及最近新出的一些大规模数据集上如 LaSOT、TrackingNet、SiamRPN++也都取得了 SOTA 的结果。


传送门

目前相关代码现已上传至商汤科技开源目标跟踪研究平台 PySOT。PySOT 实现了目前 SOTA 的多个单目标跟踪算法,旨在提供高质量、高性能的视觉跟踪研究代码库,并将其灵活应用于新算法的实现和评估中。欢迎大家使用与交流!


PySOT 开源项目


https://github.com/STVIR/pysot


SiamRPN


http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf


DaSiamRPN


http://openaccess.thecvf.com/content_ECCV_2018/papers/Zheng_Zhu_Distractor-aware_Siamese_Networks_ECCV_2018_paper.pdf


SiamRPN++


https://arxiv.org/abs/1812.11703

参考文献

  1. Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan, “SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks” (Oral) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019

  2. Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, “Distractor-aware Siamese Networks for Visual Object Tracking” European Conference on Computer Vision (ECCV) 2018

  3. Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu, “High Performance Visual Tracking with Siamese Region Proposal Network” (Spotlight) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018

  4. Luca BertinettoJack ValmadreJoão F. HenriquesAndrea VedaldiPhilip H. S. Torr “Fully-Convolutional Siamese Networks for Object Tracking” in ECCV Workshop 2016

  5. Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg.“Unveiling the Power of Deep Tracking” European Conference on Computer Vision (ECCV) 2018


2019-05-24 17:348704

评论

发布
暂无评论
发现更多内容

学习Java需要掌握哪些技能?

程序员万金游

Java

激荡十年,从未来窗口 re:Invent 看云计算发展变迁 | Q推荐

亚马逊云科技 (Amazon Web Services)

数据库 云计算 云原生 re:Invent

活动预告|AICon全球人工智能与机器学习技术大会

第四范式开发者社区

机器学习 开源 OpenMLDB

公司刚来的阿里p8,看完我构建的springboot框架,甩给我一份文档

热爱java的分享家

Java 面试 程序人生 经验分享 P8

【死磕Java并发】-----J.U.C之AQS:阻塞和唤醒线程

chenssy

11月日更 死磕 Java 死磕 Java 并发

linux 上查找包含特定文本的所有文件

入门小站

Linux

博文推荐 | 基于 Pulsar 事务实现 Exactly-Once 语义

Apache Pulsar

Java 架构 云原生 中间件 Apache Pulsar

在线文本按列截取工具

入门小站

工具

Tapdata 在线研讨会:DaaS vs 大数据平台,是竞争还是共处?

MongoDB中文社区

mongodb

我滴个乖乖!首次公布Java10W字面经,Github访问量破百万

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

为什么要学习linux内核源码以及如何学习Linux内核源码

赖猫

c++ Linux 运维 嵌入式 Linux内核

Java Collectors API实践

FunTester

Java API 测试开发 FunTester Collectors

JavaScript 数组展平方法: flat() 和 flatMap()

devpoint

11月日更 flat flatMap

博文推荐 | Apache Pulsar 三大跨地域复制解决方案

Apache Pulsar

Java 架构 分布式 云原生 Apache Pulsar

译文 | Apache Pulsar 集群如何确保消息不丢

Apache Pulsar

Java 分布式 云原生 中间件 Apache Pulsar

小谈C#异常

喵叔

11月日更

豪华阵容!13位专家力荐Spring5为企业级开发提供一站式方案

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

声网下一代视频引擎架构探索与实践

声网

音视频 视频处理 RTE 技术详解

架构原则

卢卡多多

架构 11月日更

如何使用find和locate 命令在Linux 中查找文件和目录?

Ethereal

Linux find locate

博文推荐|腾讯专家深度解析 Apache Pulsar 五大应用场景

Apache Pulsar

架构 分布式 云原生 Apache Pulsar 消息中间件

一物一码可追溯!看区块链如何帮助消费者

CECBC

头条观察 | 元宇宙成为必然趋势的三种可能

CECBC

风口上的低代码:我们看到了这些变化与趋势

脑极体

程序员如何应对职业天花板

石云升

职场天花板 职场经验 11月日更

docker vs docker-compose 解密

liuzhen007

11月日更

2021年底Java最新学习路线图

程序员万金游

Java

Python Qt GUI设计:QSpinBox计数器类(基础篇—15)

不脱发的程序猿

Python PyQt GUI设计 QSpinBox计数器类

封神总结!蚂蚁金服+滴滴+美团+拼多多+腾讯15万字Java面试题

热爱java的分享家

Java 面试 程序人生 编程语言 经验分享

DPDK 网络协议栈-vpp-OvS-DDos-虚拟化专家之路

赖猫

Linux 网络协议栈 DPDK

博文推荐|深度解析如何在 Pulsar 中实现隔离

Apache Pulsar

Java 架构 分布式 云原生 Apache Pulsar

三次成功挑战目标跟踪算法极限,商汤开源SiamRPN系列算法_AI&大模型_商汤科技智能视频团队_InfoQ精选文章