写点什么

2021 年,就业市场增速放缓的数据科学行业,还有多少“钱“景?

  • 2021-06-30
  • 本文字数:2251 字

    阅读完需:约 7 分钟

2021年,就业市场增速放缓的数据科学行业,还有多少“钱“景?

过去十年里,数据科学就业市场发展迅速,但在 2020 年增长放缓了,这让许多数据科学人才对就业前景感到疑惑。本文从多个角度讨论了这个话题,作者认为数据科学就业市场需求放缓只是暂时的,它终将随着经济复苏而回升,数据科学职业在 2021 年仍然有利可图。


数据科学的就业市场在过去十年里一直蓬勃发展。数据科学家是 IT 行业最需要的技术专家之一。研究表明,2013-2019 年期间,在几大招聘网站上的平均招聘职位数量同比增长了约 30%,而相应地,数据科学就业市场在这一时期呈现出 344%的增长[1]。


在过去十年里,几乎所有人应该都会同意《哈佛商业评论》[2]对数据科学职业的看法:这是 21 世纪最性感的工作!


然而,2020 年数据科学就业市场的增长却放缓了,这让许多数据科学人才对就业前景感到疑惑。据研究,2020 年数据科学就业市场的增长与前一年相比放缓了 15%。


此外,数据科学的姊妹领域--数据工程的就业市场在 2020 年增长速度则变得更快了[3]。这或许能解释为什么大数据行业的一些专家认为数据工程将取代数据科学的位置,成为数据从业者的下一个热门职业[4]。有些人甚至认为,数据科学行业是一个已经破灭或即将破灭的泡沫[5]。

1. 数据分析是一个快速增长的全球市场


据市场调研,到 2026 年,全球人工智能(AI)软件市场的收入预计将增长超过 1260 亿美元。事实上,有专家认为全球数据分析和人工智能市场在未来五年将保持 30%-40%的增长[6]。


这种水平的增长意味着数据分析和 AI 软件公司必须不断招聘数据科学人才,来追赶市场的整体增长,也意味着市场上的人才将有更多的工作机会。

2. 新冠大流行导致的数据科学就业市场放缓可能是暂时的


2020 年,企业为项目雇用数据科学人才的速度放缓,导致许多人认为数据科学是一个破裂的泡沫。


然而,根据 Gartner 的调查[7],47%的企业决策者并没有改变投资人工智能和机器学习技术的计划,其中 30%的人甚至打算增加投资。


另外,Gartner 认为,机器学习及其相关领域,如深度学习、计算机视觉、自然语言处理等,已经越过了泡沫期[7],这对数据科学家来说是个好消息。


越过技术成熟度曲线的峰值(泡沫期)说明公司已经开始针对机器学习和数据科学做出更实际的规划。不久之后,数据科学可能会像软件工程一样成为一种标准和职业,这样的需求也一直都存在。

3. 其他数据领域的增长利好数据科学


网络媒体上有一种说法,数据工程将取代数据科学在最热门工作列表中的地位[4],不过换个角度看,其他数据相关领域的发展实际上对数据科学的就业市场是有利的。


任何从事过大数据项目的人都知道,构建数据驱动的软件是一项团队工作。你可能需要一个由软件工程师、数据工程师、云计算和 DevOps 专家以及数据科学家组成的团队,来共同构建高性能的人工智能软件。为人工智能产品的软件团队引入更多专家或自动化工具,这有助于数据科学家专注于他们实际的工作,即数据分析、构建和优化高性能的机器学习模型,以及将可实操的洞见呈现给相关利益方。

4. 新冠大流行后的经济复苏需要一个专门的数据科学团队


对新冠大流行后的经济预测中,企业为了发展将不得不采用更多大数据分析和机器学习技术。在 AI 技术驱动的自动化趋势下,企业不得不聘请 AI 和数据科学专家来为企业软件训练机器学习模型。


另外,随着数据驱动战略的趋势越来越明显,公司也将有动力开发更多的分析仪表板和工具来协助决策。可能会有一些专家认为,这些任务可以通过现有的软件即服务和云解决方案实现自动化。


但其实企业极难找到一种一劳永逸的方案来应对所有艰巨的工作,比如从原始数据获得有意义的商业洞察或训练高性能机器学习模型。因此,新冠大流行之后的经济增长将推动对各类数据从业者的需求,包括数据科学家和数据工程师。

5. 全球性企业仍然倾向于将技术发展留在内部


许多专家认为,随着数据科学和机器学习相关的软件即服务和云解决方案越来越多,自动化最终将替代数据科学家的角色。


但如果观察一下全球性企业内部所做的 AI 和机器学习项目,尤其是财富 500 强企业,会发现一种将数据和专业知识留在内部的强烈趋势。


这可能有多方面原因,比如数据安全、商业机密保护、复杂功能要求或高性能期望等。但由此可预见的是,财富 500 强这样的企业将坚持在内部开发基于 AI 的定制软件解决方案,而非采用现成的软件解决方案。


也就是说,对具有企业思维并能在此类公司的大型 IT 项目中工作的数据科学家和机器学习专家的需求将始终存在。

总结


在过去十年中,数据科学就业市场一直在持续增长。但是,数据科学就业市场的增长放缓让许多人才怀疑他们是否有必要把精力投入到其他领域。


鉴于上文列举的原因,我们认为 2020 年期间数据科学就业市场的需求放缓或许只是暂时的,随着经济复苏,就业市场终将回升。


另外,其他与数据相关的领域,如数据工程、DevOps 和云计算的发展,也将提升此类专业知识在大型软件项目中的定位。总之,我们的结论是数据科学职业与其他数据相关职业一样,仍然是一个非常有利可图的职业,也仍是就业市场上需求的一种技能。

参考文献

[1]对数据科学家的需求正蓬勃发展且只会更多,Tech Target


[2]数据科学家:21世纪最性感的工作,《哈佛商业评论》


[3]2021年数据科学面试报告,Interview Query.


[4]我们不需要数据科学家,我们需要数据工程师,KDNuggets


[5]数据科学家 VS 数据工程师, Datacamp


[6]2018至2025年全球人工智能(AI)软件市场的收入,Statista


[7]2个大趋势主导了人工智能的Gartner技术成熟曲线,2020年,Gartner


作者介绍:


PouyanR. Fard,Fard AI 创始人,专注数据科学和 AI 领域。


原文链接:


https://towardsdatascience.com/data-science-career-is-it-still-lucrative-in-2021-f37d433d1da5

2021-06-30 10:301291
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 543.9 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

知识管理——企业数字化转型的新挑战

小炮

干货|性能提升密钥,由代码细节带来的极致体验

SphereEx

Apache 数据库 开源 ShardingSphere SphereEx

开发者说丨如何从零开始构建一个轻量级应用

华为云开发者联盟

Vue 低代码 页面 应用 AppCube

国内领先的云软件厂商安超云加入,为龙蜥社区注入新动能

OpenAnolis小助手

开源 操作系统 云厂商 国产

如何使用一个有安全性问题的隐私计算技术?

易观分析

隐私计算

RTC 音频质量评价和保障

网易云信

WebRTC

亿级月活沙盒平台《迷你世界》背后的黑科技

华为云数据库小助手

GaussDB DDM 华为云数据库

Meetup预告|面向云原生的架构及演进

云智慧AIOps社区

开源 云原生 AIOPS 智能运维

昆仑分布式数据库独特的变量读写功能介绍

KunlunBase昆仑数据库

数据库 读写分离

在一条DML语句中插入/更新/删除/获取几百万行数据,你会特别注意什么?

KunlunBase昆仑数据库

分布式数据库

【OpenMLDB Monthly Meeting】2022.2 月会议纪要

第四范式开发者社区

人工智能 数据库 开源 Meetup 特征平台

星汉未来成为 FinOps 产业标准生态联盟首批会员

星汉未来

云原生 开源社区 成本优化 IT运维

见证中国云势力崛起!博睿数据实力入围2021~2022 Cloud 100 榜单

博睿数据

吉利控股集团与百度深化战略合作

百度开发者中心

31 家企业入选阿里云首期云原生加速器,共建云原生行业新生态

阿里巴巴中间件

云计算 阿里云 云原生 加速器 生态伙伴

在线TOML转JSON工具

入门小站

工具

网络安全之文件包含漏洞总结

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

DSTC10 赛道最佳论文揭晓!文心 PLATO 再获殊荣

百度开发者中心

Javascript实现上传图片并实现预览图片功能的三种方法

deal

3月日更 3月程序媛福利 3月月更

【Kali】中密码暴力破解工具hydra的使用

学神来啦

网络安全 字典 kali kali Linux

【技术学习】一次Node.js站点渗透

H

node.js 网络安全 渗透测试

J2PaaS低代码平台,如何赋能开发者,助力企业数字化?

J2PaaS低代码平台

开发者 低代码 企业数字化 地代码平台 J2PaaS

网易X工行:云原生日志系统 Loggie 正式开源!

网易数帆

开源 云原生 日志 Filebeat Loggie

华为SmartCare和AUTIN品牌升级:助力运营商走出5G发展迷宫

脑极体

ARP欺骗攻击

喀拉峻

网络安全

阿里巴巴如何提升构建的效率 | 阿里巴巴DevOps实践指南

阿里云云效

阿里巴巴 阿里云 CI/CD 持续交付 构建工具

培训第二弹!全国大学生智能汽车竞赛百度竞速组预告

百度开发者中心

如何为你的企业创建自助服务知识库

小炮

多任务学习模型之DBMTL介绍与实现

阿里云大数据AI技术

机器学习 深度学习 数据模型 多任务学习

以领先NLP技术构建AI数字疗法体系,聆心智能致力于解开更多“心结”

硬科技星球

恒源云(GpuShare)_表序编码器的联合实体和关系提取(论文浅谈)

恒源云

自然语言处理 机器学习 深度学习

2021年,就业市场增速放缓的数据科学行业,还有多少“钱“景?_AI&大模型_Pouyan R. Fard_InfoQ精选文章