速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

为 Jaeger 安装环境搭建监控基础设施

  • 2019-09-22
  • 本文字数:6191 字

    阅读完需:约 20 分钟

为Jaeger安装环境搭建监控基础设施

本文最初发表于RedHat开发者博客,经原作者 Juraci Paixão Kröhling 和 RedHat 授权由 InfoQ 中文站翻译分享。


在生产环境中部署Jaeger时,持续观察 Jaeger 实例,保证它的行为符合预期是非常重要的。毕竟,Jaeger 停机将会意味着跟踪数据的丢失,这样的话,我们很难理解生产环境的应用中究竟出现了什么问题。


本文将会介绍如何为 Jaeger 安装环境构建监控基础设施。首先,我们会为那些急切想监控 Jaeger 的读者提供现成资源的链接。


在第二部分中,我们会深入了解如何在Kubernetes集群中安装所有的工具,包括PrometheusGrafana和 Jaeger 本身,同时还会学习如何安装所需的工具,从而基于 Jaeger 官方的监控 mixin 自定义告警规则和 dashboard。


提示:如果你已经具有 Grafana、Prometheus 和 Jaeger 组成的可运行环境的话,那么你可能只关心基础 dashboard 和告警定义在什么地方,它们的地址如下:



如果你已经熟悉 mixin 的话,Jaeger 的官方监控 mixin 就可以在主资源仓库获取

预备条件

本指南假设你具备 Kubernetes 的 admin 访问权限。如果以测试为目的的话,有一种了解 Kubernetes 集群的简便方式,那就是在本地运行Minikube


本指南还需要用到jsonnetjb (jsonnet-bundler)。它们可以借助 go get,在本地机器通过如下命令安装:



1. $ go get github.com/google/go-jsonnet/cmd/jsonnet2. $ go get github.com/jsonnet-bundler/jsonnet-bundler/cmd/jb
复制代码

安装 Prometheus、Alertmanager 和 Grafana

在 Kubernetes 之上安装 Prometheus 可以通过多种方式来实现。其中一种方式是使用kube-prometheus项目,但是也可以直接使用Prometheus Operator,还可以使用Prometheus Operator的社区Helm chart。在本指南中,我们会使用 kube-prometheus 来获取 Prometheus、Alertmanager 和 Grafana 实例。


首先,我们使用 jb 生成一个基础 jsonnet 文件,该文件描述了我们的安装需求,将 kube-prometheus 作为依赖添加进来:



1. $ jb init2. $ jb install \3. github.com/jaegertracing/jaeger/monitoring/jaeger-mixin@master \4. github.com/grafana/jsonnet-libs/grafana-builder@master \5. github.com/coreos/kube-prometheus/jsonnet/kube-prometheus@master
复制代码


完成之后,我们需要有一个名为 jsonnetfile.json 的 manifest 文件,它大致如下所示:



1. {2. "dependencies": [3. {4. "name": "mixin",5. "source": {6. "git": {7. "remote": "https://github.com/jpkrohling/jaeger",8. "subdir": "monitoring/mixin"9. }10. },11. "version": "1668-Move-Jaeger-mixing-to-main-repo"12. },13. {14. "name": "grafana-builder",15. "source": {16. "git": {17. "remote": "https://github.com/grafana/jsonnet-libs",18. "subdir": "grafana-builder"19. }20. },21. "version": "master"22. },23. {24. "name": "kube-prometheus",25. "source": {26. "git": {27. "remote": "https://github.com/coreos/kube-prometheus",28. "subdir": "jsonnet/kube-prometheus"29. }30. },31. "version": "master"32. }33. ]34. }
复制代码


install 命令应该还会创建一个名为 vendor 的目录,其中包含了所有的 jsonnet 依赖。现在,我们所需要就是一个 deployment 描述符:创建一个名为 monitoring-setup.jsonnet 的文件,内容如下:



1. local kp =2. (import 'kube-prometheus/kube-prometheus.libsonnet') +3. {4. _config+:: {5. namespace: 'monitoring',6. },7. };8. 9. { ['00namespace-' + name + '.json']: kp.kubePrometheus[name] for name in std.objectFields(kp.kubePrometheus) } +10. { ['0prometheus-operator-' + name + '.json']: kp.prometheusOperator[name] for name in std.objectFields(kp.prometheusOperator) } +11. { ['node-exporter-' + name + '.json']: kp.nodeExporter[name] for name in std.objectFields(kp.nodeExporter) } +12. { ['kube-state-metrics-' + name + '.json']: kp.kubeStateMetrics[name] for name in std.objectFields(kp.kubeStateMetrics) } +13. { ['alertmanager-' + name + '.json']: kp.alertmanager[name] for name in std.objectFields(kp.alertmanager) } +14. { ['prometheus-' + name + '.json']: kp.prometheus[name] for name in std.objectFields(kp.prometheus) } +15. { ['prometheus-adapter-' + name + '.json']: kp.prometheusAdapter[name] for name in std.objectFields(kp.prometheusAdapter) } +16. { ['grafana-' + name + '.json']: kp.grafana[name] for name in std.objectFields(kp.grafana) }
复制代码


这样,我们就能生成所需的 deployment manifest,并应用它们:



1. $ jsonnet -J vendor -cm manifests/ monitoring-setup.jsonnet2. $ kubectl apply -f manifests/
复制代码


第一次使用的时候,自定义资源定义(Custom Resource Definition,CRD)可能尚未就绪,这会导致如下的信息:



1. no matches for kind "ServiceMonitor" in version "monitoring.coreos.com/v1"
复制代码


如果出现这种情况的话,只需要再次应用一下这些 manifest 即可,因为它们是幂等的。


几分钟之后,我们应该就会有几个可用的_Deployment_和_Statefulset_资源了:



1. $ kubectl get deployments -n monitoring 2. NAME READY UP-TO-DATE AVAILABLE AGE3. grafana 1/1 1 1 56s4. kube-state-metrics 1/1 1 1 56s5. prometheus-adapter 1/1 1 1 56s6. prometheus-operator 1/1 1 1 57s7. 8. $ kubectl get statefulsets -n monitoring9. NAME READY AGE10. alertmanager-main 3/3 60s11. prometheus-k8s 2/2 50s
复制代码


我们可以直接连接服务的端口,检查一下 Prometheus 是否已经启动:



1. $ kubectl port-forward -n monitoring service/prometheus-k8s 9090:90902. $ firefox http://localhost:9090
复制代码


对 Grafana 执行相同的检查,默认凭证的用户名和密码都是_admin_:



1. $ kubectl port-forward -n monitoring service/grafana 3000:3000`2. `$ firefox http://localhost:3000`
复制代码

安装 Jaeger

Jaeger Operator 默认会安装到“observability”命名空间中。在本指南中,我们会将它放到“monitoring”命名空间中,与 Prometheus 和 Grafana 放到一起。为了实现这一点,我们需要通过 curl 获取 manifest,并将“observability”替换为“monitoring”,然后将输出提供给 kubectl:



1. $ kubectl create -f https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/crds/jaegertracing_v1_jaeger_crd.yaml2. $ curl -s https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/service_account.yaml | sed 's/observability/monitoring/gi' | kubectl apply -f -3. $ curl -s https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/role.yaml | sed 's/observability/monitoring/gi' | kubectl apply -f -4. $ curl -s https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/role_binding.yaml | sed 's/observability/monitoring/gi' | kubectl apply -f -5. $ curl -s https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/operator.yaml | sed 's/observability/monitoring/gi' | kubectl apply -f -
复制代码


在撰写本文的时候,最新版本为 v1.13.1,所以你可以修改上述 URL 以匹配所需的版本。几分钟之后,Jaeger Operator 就能启动并运行了:



1. $ kubectl get deployment/jaeger-operator -n monitoring2. NAME READY UP-TO-DATE AVAILABLE AGE3. jaeger-operator 1/1 1 1 23s
复制代码


Jaeger Operator 准备就绪之后,我们就可以创建名为 tracing 的 Jaeger 实例了:



1. kubectl apply -f - <<eof2. apiVersion: jaegertracing.io/v13. kind: Jaeger4. metadata:5. name: tracing6. namespace: monitoring7. EOF</eof
复制代码


稍等片刻,Jaeger 实例就会准备就绪:



1. $ kubectl get deployment/tracing -n monitoring 2. NAME READY UP-TO-DATE AVAILABLE AGE3. tracing 1/1 1 1 17s4. 5. $ kubectl get ingress -n monitoring 6. NAME HOSTS ADDRESS PORTS AGE7. tracing-query \* 192.168.122.181 80 26s
复制代码


我们可以在 Web 浏览器中通过给定的 IP 地址访问 Jaeger UI。在本例中,也就是http://192.168.122.181/,但是你的 IP 可能会有所不同。


现在,所有的内容都运行起来了,接下来我们安装业务应用,并通过 instrument 操作让它为接收到的每个请求都创建 span:



1. $ kubectl apply -n default -f https://raw.githubusercontent.com/jaegertracing/jaeger-operator/v1.13.1/deploy/examples/business-application-injected-sidecar.yaml
复制代码


部署完成之后,我们可以直接打开一个到 Pod 的连接并向其发送请求:



1. $ kubectl get -n default deployment/myapp 2. NAME READY UP-TO-DATE AVAILABLE AGE3. myapp 1/1 1 1 26s4. 5. $ kubectl port-forward deployment/myapp 8080:80806. $ watch -n 0.5 curl localhost:8080
复制代码


这样每秒钟会生成两个 HTTP 请求,在 Jaeger UI 中,我们应该会看到每个 HTTP 请求都会有一个 trace。

创建 PodMonitor

现在,我们已经有了一组功能齐全的监控服务:Prometheus、Grafana、Alertmanager 和 Jaeger。但是,Jaeger deployment 所生成的指标并没有被 Prometheus 所捕获:我们需要创建一个 ServiceMonitor 或 PodMonitor,以便于告诉 Prometheus 到哪里获取数据。


根据组件的不同,指标会由不同的端口来提供:


组件端口
Agent14271
Collector14269
Query16687
All in one14269


我们所创建的 Jaeger 实例并没有指定strategy,所以将会使用默认的 strategy,即 allInOne。我们的 PodMonitor 要告诉 Prometheus 从 14269 端口获取指标:



1. $ kubectl apply -f - <<eof2. apiVersion: monitoring.coreos.com/v13. kind: PodMonitor4. metadata:5. name: tracing6. namespace: monitoring7. spec:8. podMetricsEndpoints:9. - interval: 5s10. targetPort: 1426911. selector:12. matchLabels:13. app: jaeger14. EOF</eof
复制代码


Prometheus 可能需要花费几分钟的时间才能找到这个新的 target。进入 Targets 页面,查找 monitoring/tracing/0 这个 target。Prometheus 捕获到 Jaeger 的指标端点之后,我们就可以在 Prometheus Graph 视图中看到 Jaeger 的指标了。例如,进入 jaeger_collector_traces_saved_by_svc_total 并点击 Execute。图中显示的 trace 数量应该随着时间的推移而增加,它反映了前面步骤中针对业务应用程序运行的 HTTP 请求的数量。


适配 mixin

现在,我们已经在 Prometheus 中获得了来自 Jaeger 实例的指标数据,但是应该在 dashboard 上显示哪些指标,在什么情况下应该生成哪些告警呢?


很难找到一个通用的、适合所有情况的答案来回答这些问题,但是我们在 Grafana 实验室的朋友们为 Jaeger 设计了一个 mixin,它可以作为你自己的 dashboard 和告警的一个起点。此后,该 mixin 贡献了给 Jaeger 项目,并且可以在主存储库下访问。


让我们回到最初的 monitoring-setup.jsonnet,并添加 Jaeger 特定的 dashboard 和告警规则:



1. local jaegerAlerts = (import 'jaeger-mixin/alerts.libsonnet').prometheusAlerts;2. local jaegerDashboard = (import 'jaeger-mixin/mixin.libsonnet').grafanaDashboards;3. 4. local kp =5. (import 'kube-prometheus/kube-prometheus.libsonnet') +6. {7. _config+:: {8. namespace: 'monitoring',9. },10. grafanaDashboards+:: {11. 'jaeger.json': jaegerDashboard['jaeger.json'],12. },13. prometheusAlerts+:: jaegerAlerts,14. };15. 16. { ['00namespace-' + name + '.json']: kp.kubePrometheus[name] for name in std.objectFields(kp.kubePrometheus) } +17. { ['0prometheus-operator-' + name + '.json']: kp.prometheusOperator[name] for name in std.objectFields(kp.prometheusOperator) } +18. { ['node-exporter-' + name + '.json']: kp.nodeExporter[name] for name in std.objectFields(kp.nodeExporter) } +19. { ['kube-state-metrics-' + name + '.json']: kp.kubeStateMetrics[name] for name in std.objectFields(kp.kubeStateMetrics) } +20. { ['alertmanager-' + name + '.json']: kp.alertmanager[name] for name in std.objectFields(kp.alertmanager) } +21. { ['prometheus-' + name + '.json']: kp.prometheus[name] for name in std.objectFields(kp.prometheus) } +22. { ['prometheus-adapter-' + name + '.json']: kp.prometheusAdapter[name] for name in std.objectFields(kp.prometheusAdapter) } +23. { ['grafana-' + name + '.json']: kp.grafana[name] for name in std.objectFields(kp.grafana) }
复制代码


接下来,生成新的 manifest:


$ jsonnet -J vendor -cm manifests/ monitoring-setup.jsonnet


这里只会改变几个 manifest,但是我们可以安全地再次应用所有的 manifest:



1. $ kubectl apply -f manifests/
复制代码


稍等片刻之后,将会有一个新的 Grafana pod 替代之前的:



1. $ kubectl get pods -n monitoring -l app=grafana2. NAME READY STATUS RESTARTS AGE3. grafana-558647b59-fkmr4 1/1 Running 0 11m4. grafana-7bcb7f5b9b-6rv2w 0/1 Pending 0 8s
复制代码


注意:当使用 Minikube 时,新 pod 可能会由于 Insufficient cpu 而处于 Pending 状态。我们可以通过运行 kubectl describe -n monitoring pod POD_NAME 来检查原因,并使用 kubectl delete -n monitoring pod POD_NAME 手动删除旧的 pod,或者使用标记–cpus 以更高的值来启动 minikube。


新的 Grafana pod 启动并运行之后,我们应该会看到 Grafana 有一个新的 Jaeger 仪表板,显示 Prometheus 提供的数据。类似地,Prometheus 中也会有一个新的告警规则:查找名称中带有“Jaeger”的规则,比如 JaegerCollectorQueueNotDraining:


总结

在云原生微服务领域中,部署可观察性工具为业务应用程序提供洞察能力是必备的,另外,监视这些工具本身的行为也是必要的。本文展示了在 Kubernetes 中搭建完整技术栈并运行起来的一种方法,最终目标是使用 Jaeger 自己的内部指标来监视 Jaeger。相同的方式可以扩展至让 Prometheus 获取业务应用的指标,并以 Grafana 作为 dashboard 工具来对数据进行可视化。


2019-09-22 08:003544

评论

发布
暂无评论
发现更多内容

引领AI创意教育新浪潮,瑞云AIGC实训平台解决方案来了

3DCAT实时渲染

AIGC实训教学

FCPX插件:276个水果蔬菜肉类面包佐料食物餐具动画预设 mCuisine

iMac小白

透过 Footprint 的聚合视图洞察加密世界的全貌

Footprint Analytics

区块链 数据分析 加密货币

BRC20支持的Dapp:开创去中心化应用的未来

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

观测云产品更新 | 告警策略、智能监控、场景图表、查看器等

观测云

智能监控 可视化图表

动态线条路径描边绘制生长动画AE插件Volna for mac v2.4.7激活版

iMac小白

Imagiro Autochroma for Mac(混响音频插件) v1.25激活版

iMac小白

什么是信创业态支持?支持信创的数据库防水坝哪家好?

行云管家

数据库 信创 堡垒机 国产化 数据库防水坝

库存智慧:数字化管理下的服装企业如何实现库存的精准优化

第七在线

AE插件汉化 AutoFill 自动填充路径生长动画 v2.0.0中英激活版

iMac小白

字节跳动新一代云原生消息队列实践

字节跳动云原生计算

云原生 消息列队

以 AI 升级自我 | Kyligence 荣获多个奖项及榜单认可

Kyligence

数据分析 组织运营

智能预测:数字化时代的服装企业如何实现准确的需求规划

第七在线

香港服务器出租的优势分析:为何成为企业首选?

一只扑棱蛾子

香港服务器

深入了解如何对IPA包进行有效的混淆处理

华为云CodeArts Snap荣获信通院优秀大模型案例及两项荣誉证书

华为云PaaS服务小智

人工智能 软件开发 华为云

如何利用Flutter和小程序容器技术打造多端适配的小程序解决方案

Geek_2305a8

SpringBoot 整合多数据源的事务问题

不在线第一只蜗牛

数据库 spring Spring Boot 开发语言

AE模板-浪漫情人节粉红心形树花瓣飘舞开场片头 Valentines Tree Wishes Reveal下载

iMac小白

区块链游戏解说:Sunflower Land 是什么

Footprint Analytics

区块链游戏 NFT 链游

28图图解Raft协议,so easy~~

快乐非自愿限量之名

Java 前端 开发 服务器 raft

Java Chassis 3技术解密:与Spring Cloud的互操作

华为云PaaS服务小智

Java 华为云

4个大语言模型训练中的典型开源数据集

华为云开发者联盟

人工智能 华为云 开源数据集 华为云开发者联盟 大语言模型

跨平台销售策略:通过API同步不同市场的商品数据

Noah

纯血鸿蒙来了,鸿蒙App开发有可能提速吗?

FinFish

鸿蒙系统 小程序化 小程序技术 鸿蒙Next 纯血鸿蒙

现在好用的低代码平台有哪些?JNPF算一个

互联网工科生

低代码 JNPF

质量保障:成本和价值的思考

老张

软件测试 研发效能 质量保障

Noiseware for Mac(专业图像降噪滤镜) v6.0.4(6040)激活版

iMac小白

AE模板-经典数字时钟动画 Classic Clocks激活版

iMac小白

聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

京东科技开发者

为Jaeger安装环境搭建监控基础设施_软件工程_Juraci Paixão Kröhling_InfoQ精选文章