写点什么

每天十亿级数据更新,秒出查询结果,ClickHouse 在携程酒店的应用

  • 2019-07-05
  • 本文字数:3921 字

    阅读完需:约 13 分钟

每天十亿级数据更新,秒出查询结果,ClickHouse在携程酒店的应用

一、背景

1)携程酒店每天有上千表,累计十多亿数据更新,如何保证数据更新过程中生产应用高可用;


2)每天有将近百万次数据查询请求,用户可以从粗粒度国家省份城市汇总不断下钻到酒店,房型粒度的数据,我们往往无法对海量的明细数据做进一步层次的预聚合,大量的关键业务数据都是好几亿数据关联权限,关联基础信息,根据用户场景获取不同维度的汇总数据;


3)为了让用户无论在 app 端还是 pc 端查询数据提供秒出的效果,我们需要不断的探索,研究找到最合适的技术框架。


对此,我们尝试过关系型数据库,但千万级表关联数据库基本上不太可能做到秒出,考虑过 Sharding,但数据量大,各种成本都很高。热数据存储到 ElasticSearch,但无法跨索引关联,导致不得不做宽表,因为权限,酒店信息会变,所以每次要刷全量数据,不适用于大表更新,维护成本也很高。Redis 键值对存储无法做到实时汇总,也测试过 Presto,GreenPlum,kylin,真正让我们停下来深入研究,不断的扩展使用场景的是 ClickHouse。

二、ClickHouse 介绍

ClickHouse 是一款用于大数据实时分析的列式数据库管理系统,而非数据库。通过向量化执行以及对 cpu 底层指令集(SIMD)的使用,它可以对海量数据进行并行处理,从而加快数据的处理速度。


主要优点有:


1)为了高效的使用 CPU,数据不仅仅按列存储,同时还按向量进行处理;


2)数据压缩空间大,减少 io;处理单查询高吞吐量每台服务器每秒最多数十亿行;


3)索引非 B 树结构,不需要满足最左原则;只要过滤条件在索引列中包含即可;即使在使用的数据不在索引中,由于各种并行处理机制 ClickHouse 全表扫描的速度也很快;


4)写入速度非常快,50-200M/s,对于大量的数据更新非常适用;


ClickHouse 并非万能的,正因为 ClickHouse 处理速度快,所以也是需要为“快”付出代价。选择 ClickHouse 需要有下面注意以下几点:


1)不支持事务,不支持真正的删除/更新;


2)不支持高并发,官方建议 qps 为 100,可以通过修改配置文件增加连接数,但是在服务器足够好的情况下;


3)sql 满足日常使用 80%以上的语法,join 写法比较特殊;最新版已支持类似 sql 的 join,但性能不好;


4)尽量做 1000 条以上批量的写入,避免逐行 insert 或小批量的 insert,update,delete 操作,因为 ClickHouse 底层会不断的做异步的数据合并,会影响查询性能,这个在做实时数据写入的时候要尽量避开;


5)Clickhouse 快是因为采用了并行处理机制,即使一个查询,也会用服务器一半的 cpu 去执行,所以 ClickHouse 不能支持高并发的使用场景,默认单查询使用 cpu 核数为服务器核数的一半,安装时会自动识别服务器核数,可以通过配置文件修改该参数;

三、ClickHouse 在酒店数据智能平台的实践

3.1 数据更新

我们的主要数据源是 Hive 到 ClickHouse,现在主要采用如下两种方式:


1)Hive 到 MySql,再导入到 ClickHouse


初期在 DataX 不支持 hive 到 ClickHouse 的数据导入,我们是通过 DataX 将数据先导入 mysql,再通过 ClickHouse 原生 api 将数据从 mysql 导入到 ClickHouse。


为此我们设计了一套完整的数据导入流程,保证数据从 hive 到 mysql 再到 ClickHouse 能自动化,稳定的运行,并保证数据在同步过程中线上应用的高可用。



2)Hive 到 ClickHouse


DataX 现在支持 hive 到 ClickHouse,我们部分数据是通过 DataX 直接导入 ClickHouse。但 DataX 暂时只支持导入,因为要保证线上的高可用,所以仅仅导入是不够的,还需要继续依赖我们上面的一套流程来做 ReName,增量数据更新等操作。


针对数据高可用,我们对数据更新机制做了如下设计:

3.1.1 全量数据导入流程


全量数据的导入过程比较简单,仅需要将数据先导入到临时表中,导入完成之后,再通过对正式表和临时表进行 ReName 操作,将对数据的读取从老数据切换到新数据上来。

3.1.2 增量数据的导入过程


增量数据的导入过程,我们使用过两个版本。


由于 ClickHouse 的 delete 操作过于沉重,所以最早是通过删除指定分区,再把增量数据导入正式表的方式来实现的。


这种方式存在如下问题:一是在增量数据导入的过程中,数据的准确性是不可保证的,如果增量数据越多,数据不可用的时间就越长;二是 ClickHouse 删除分区的动作,是在接收到删除指令之后内异步执行,执行完成时间是未知的。如果增量数据导入后,删除指令也还在异步执行中,会导致增量数据也会被删除。最新版的更新日志说已修复这个问题。


针对以上情况,我们修改了增量数据的同步方案。在增量数据从 Hive 同步到 ClickHouse 的临时表之后,将正式表中数据反写到临时表中,然后通过 ReName 方法切换正式表和临时表。


通过以上流程,基本可以保证用户对数据的导入过程是无感知的。

3.2 数据导入过程的监控与预警

由于数据量大,数据同步的语句经常性超时。为保证数据同步的每一个过程都是可监控的,我们没有使用 ClickHouse 提供的 JDBC 来执行数据同步语句,所有的数据同步语句都是通过调用 ClickHouse 的 RestfulAPI 来实现的。


调用 RestfulAPI 的时候,可以指定本次查询的 QueryID。在数据同步语句超时的情况下,通过轮询来获得某 QueryID 的执行进度。这样保证了整个查询过程的有序运行。在轮询的过程中,会对异常情况进行记录,如果异常情况出现的频次超过阈值,JOB 会通过短信给相关人员发出预警短信。

3.3 服务器分布与运维

现在主要根据场景分国内,海外/供应商,实时数据,风控数据 4 个集群。每个集群对应的两到三台服务器,相互之间做主备,程序内部将查询请求分散到不同的服务器上做负载均衡。


假如某一台服务器出现故障,通过配置界面修改某个集群的服务器节点,该集群的请求就不会落到有故障的服务器上。如果在某个时间段某个特定的数据查询量比较大,组建虚拟集群,将所有的请求分散到其他资源富于的物理集群上。


下半年计划把每个集群的两台机器分散到不同的机房,可以继续起到现有的主备,负载均衡的作用还能起到 dr 的作用。同时为了保障线上应用的高可用,我们会实现自动健康检测机制,针对突发异常的服务器自动拉出我们的虚拟集群。



我们会监控每台服务器每天的查询量,每个语句的执行时间,服务器 CPU,内存相关指标,以便于及时调整服务器上查询量比较高的请求到其他服务器。



四、ClickHouse 使用探索

我们在使用 ClickHouse 的过程中遇到过各种各样的问题,总结出来供大家参考。


1)关闭 Linux 虚拟内存。在一次 ClickHouse 服务器内存耗尽的情况下,我们 Kill 掉占用内存最多的 Query 之后发现,这台 ClickHouse 服务器并没有如预期的那样恢复正常,所有的查询依然运行的十分缓慢。


通过查看服务器的各项指标,发现虚拟内存占用量异常。因为存在大量的物理内存和虚拟内存的数据交换,导致查询速度十分缓慢。关闭虚拟内存,并重启服务后,应用恢复正常。


2)为每一个账户添加 join_use_nulls 配置。ClickHouse 的 SQL 语法是非标准的,默认情况下,以 Left Join 为例,如果左表中的一条记录在右表中不存在,右表的相应字段会返回该字段相应数据类型的默认值,而不是标准 SQL 中的 Null 值。对于习惯了标准 SQL 的我们来说,这种返回值经常会造成困扰。


3)JOIN 操作时一定要把数据量小的表放在右边,ClickHouse 中无论是 Left Join 、Right Join 还是 Inner Join 永远都是拿着右表中的每一条记录到左表中查找该记录是否存在,所以右表必须是小表。


4)通过 ClickHouse 官方的 JDBC 向 ClickHouse 中批量写入数据时,必须控制每个批次的数据中涉及到的分区的数量,在写入之前最好通过 Order By 语句对需要导入的数据进行排序。无序的数据或者数据中涉及的分区太多,会导致 ClickHouse 无法及时的对新导入的数据进行合并,从而影响查询性能。


5)尽量减少 JOIN 时的左右表的数据量,必要时可以提前对某张表进行聚合操作,减少数据条数。有些时候,先 GROUP BY 再 JOIN 比先 JOIN 再 GROUP BY 查询时间更短。


6)ClickHouse 版本迭代很快,建议用去年的稳定版,不能太激进,新版本我们在使用过程中遇到过一些 bug,内存泄漏,语法不兼容但也不报错,配置文件并发数修改后无法生效等问题。


7)避免使用分布式表,ClickHouse 的分布式表性能上性价比不如物理表高,建表分区字段值不宜过多,太多的分区数据导入过程磁盘可能会被打满。


8)服务器 CPU 一般在 50%左右会出现查询波动,CPU 达到 70%会出现大范围的查询超时,所以 ClickHouse 最关键的指标 CPU 要非常关注。我们内部对所有 ClickHouse 查询都有监控,当出现查询波动的时候会有邮件预警。


9)查询测试 Case 有:6000W 数据关联 1000W 数据再关联 2000W 数据 sum 一个月间夜量返回结果:190ms;2.4 亿数据关联 2000W 的数据 group by 一个月的数据大概 390ms。但 ClickHouse 并非无所不能,查询语句需要不断的调优,可能与查询条件有关,不同的查询条件表是左 join 还是右 join 也是很有讲究的。

五、总结

酒店数据智能平台从去年 7 月份试点,到现在 80%以上的业务都已接入 ClickHouse。满足每天十多亿的数据更新和近百万次的数据查询,支撑 app 性能 98.3%在 1 秒内返回结果,pc 端 98.5%在 3 秒内返回结果


从使用的角度,查询性能不是数据库能相比的,从成本上也是远低于关系型数据库成本的,单机支撑 40 亿以上的数据查询毫无压力。与 ElasticSearch,Redis 相比 ClickHouse 可以满足我们大部分使用场景。


我们会继续更深入的研究 ClickHouse,跟进最新的版本,同时也会继续保持对外界更好的开源框架的研究,尝试,寻找到更合适我们的技术框架。


作者介绍


蔡岳毅,携程酒店大数据高级研发经理,负责酒店数据智能平台研发,大数据技术创新工作。喜欢探索研究大数据的开源技术框架。


本文转载自公众号携程技术中心(ID:ctriptech)


原文链接


https://mp.weixin.qq.com/s/cqbzH9x5aESPBVG8NiaqjQ


2019-07-05 08:0012669

评论

发布
暂无评论
发现更多内容

软件测试 | 人工智能在自动化测试脚本生成中的应用

测吧(北京)科技有限公司

测试

使用Python调用API接口获取京东关键词详情数据

Noah

Python系列:如何提高python程序代码的健壮性

树上有只程序猿

Python

有完美的 React 框架吗?三巨头之战:Remix、Next.js 和 Gatsby

互联网工科生

前端开发 React

最新前端技术趋势——菜鸟必看

秃头小帅oi

前端

Mybatis和其他主流框架的整合使用

不在线第一只蜗牛

开源 mybatis 项目开发

Aiseesoft Video Repair for Mac(视频修复软件) 1.0.12永久激活版

mac

苹果mac Windows软件 视频修复软件 AIseesoft Video RepAIr

Linux 安装gradle

javaNice

Java Linux Gradle

腾讯云大数据获“年度金融科技创新之星”,新一代数据架构首次公布

腾讯云大数据

大数据

HarmonyOS三个设计原则教你如何设计高使用率万能卡片

新消费日报

和鲸科技创始人范向伟受邀出席“凌云出海,来中东吧”2023华为云上海路演活动

ModelWhale

人工智能 华为云 数据科学 出海 中东

DAPP开发:区块链平台、设计智能合约、创建用户界面等

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

软件测试 | 基于ChatGPT的个性化人工智能应用开发:解锁交互新维度

测吧(北京)科技有限公司

测试

和鲸 ModelWhale 入驻华为蓝鲸应用商城,助力大模型时代 AI 赋能应用落地

ModelWhale

人工智能 华为 AI 数据科学

什么是谷歌SEO推广,谷歌SEO推广的6大优势!

九凌网络

推动NLP预训练模型的创新发展

百度开发者中心

nlp 大模型 LLM

华秋第九届硬创大赛全国总决赛,邀你一同见证~

华秋电子

如何防止网站被黑,降低网站被攻击的风险?

九凌网络

合约跟单交易所开发流程

区块链技术

软件测试 | 人工智能在自动化缺陷检测中的崭新前景

测吧(北京)科技有限公司

测试

云主机CPU和内存配比:优化资源分配的关键

天翼云开发者社区

云计算 cpu 云主机

预训练模型在迁移学习中的应用

百度开发者中心

深度学习 大模型 LLM

一键整合,万用万灵,Python3.10项目嵌入式一键整合包的制作(Embed)

不在线第一只蜗牛

开发语言 #python

Termius for Mac(多协议远程管理软件) 8.4.0完美激活版

mac

苹果mac Windows软件 Termius 远程访问和管理工具

每天十亿级数据更新,秒出查询结果,ClickHouse在携程酒店的应用_数据库_蔡岳毅_InfoQ精选文章