写点什么

Transformer 在推荐模型中的应用总结

  • 2019-11-29
  • 本文字数:2535 字

    阅读完需:约 8 分钟

Transformer在推荐模型中的应用总结

最近基于 transformer 的一些 NLP 模型很火(比如 BERT,GPT-2 等),因此将 transformer 模型引入到推荐算法中是近期的一个潮流。transformer 比起传统的 LSTM、GRU 等模型,可以更好地建模用户的行为序列。本文主要整理 transformer 在推荐模型中的一些应用。

1. Self-Attentive Sequential Recommendation

模型结构:



方法:


符号定义:



问题定义:模型输入是用户 u 的一个历史交互序列: [公式] , 其期望的输出是该交互序列一个时间刻的偏移: [公式] 。


Embedding 层


将输入序列 [公式] 转化成固定长度的序列 [公式] 。意思是如果序列长度超过 n,则使用最近 n 个行为。如果不足 n,则从左侧做 padding 直到长度为 n。


位置 embedding: 因为 self-attention 并不包含 RNN 或 CNN 模块,因此它不能感知到之前 item 的位置。本文输入 embedding 中也结合了位置 Embedding P 信息,并且位置 embedding 是可学习的:



Self-Attention 层


Transformer 中 Attention 的定义为:



本文中,self-attention 以 embedding 层的输出作为输入,通过线性投影将它转为 3 个矩阵,然后输入 attention 层:



为了避免在预测 i 时刻的 item 时用到后续时刻的信息,本文将符合(j > i)条件的 [公式] 与 [公式] 之间的连接 forbidding 掉,这是因为 self-attention 每个时刻的输出会包含所有时刻的信息。

Point-wise 前馈网络

尽管 self-attention 能够用自适应权重并且聚焦之前所有的 item,但最终它仍是个线性模型。可用一个两层的 point-wise 前馈网络去增加非线性同时考虑不同隐式维度之间的交互:



  • Self-Attention layer 的堆叠

  • 预测层

  • 最后采用 MF 层来预测相关的 item i:



其中 [公式] 是给定 t 个 item,下一个 item i 的相关性。N 是 item embedding 矩阵。


为了减少模型尺寸及避免过拟合,共用一个 item embedding:



  • 显式用户建模

  • 为了提供个性化推荐,当前主要有两种方法:学习显式的用户 embedding 表示用户偏好(MF,FPMC,Caser);考虑用户之前的行为,通过访问过的 item 的 embedding 推测隐式的用户 embedding。本文采用第二种方式,同时额外在最后一层插入显式用户 embedding [公式] ,例如通过加法实现:


但是通过实验发现增加显式用户 embedding 并没有提升效果。


  • 网络训练

  • 定义时间步 t 的输出为:



用二元交叉熵损失作为目标函数:


2. Next Item Recommendation with Self-Attention

模型:



本文亮点是同时建模用户短期兴趣(由 self-attention 结构提取)和用户长期兴趣。其短期兴趣建模过程如下:


假定使用用户最近的 L 条行为记录来计算短期兴趣。可使用 X 表示整个物品集合的 embedding,那么,用户 u 在 t 时刻的前 L 条交互记录所对应的 embedding 表示如下:



其中每个 item 的 embedding 维度为 d,将 [公式] 作为 transformer 中一个 block 的输入:



这里需要注意和传统 transformer 的不同点:


  • 计算 softmax 前先掩掉 [公式] 矩阵的对角线值,因为对角线其实是 item 与本身的一个内积值,容易给该位置分配过大的权重。

  • 没有将输入 [公式] 乘以 [公式] 得到 [公式] ,而是直接将输入[公式]乘以 softmax 算出来的 score。

  • 直接将 embedding 在序列维度求平均,作为用户短期兴趣向量。

  • 另外加入了时间信号:

  • self-attention 模块只使用用户最近的 L 个交互商品作为用户短期的兴趣。那么怎么建模用户的长期兴趣呢?可认为用户和物品同属于一个兴趣空间,用户的长期兴趣可表示成空间中的一个向量,而某物品也可表示为成该兴趣空间中的一个向量。那如果一个用户对一个物品的评分比较高,说明这两个兴趣是相近的,那么它们对应的向量在兴趣空间中距离就应该较近。这个距离可用平方距离表示:



其中 U 是用户的兴趣向量,V 是物品的兴趣向量


综合短期兴趣和长期兴趣,可得到用户对于某个物品的推荐分,推荐分越低,代表用户和物品越相近,用户越可能与该物品进行交互:



模型采用 pair-wise 的方法训练,即输入一个正例和一个负例,希望负例的得分至少比正例高γ,否则就发生损失,并在损失函数加入 L2 正则项:


  1. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

  2. 亮点:结合使用预训练的 BERT 模型


模型架构:



Embedding Layer


模型的输入是用户历史交互序列,对交互序列中的每一个物品 i,其 Embedding 包含两部分,一部分是物品的 Embedding,用 vi 表示,另一部分是位置信息的 Embedding,用 pi 表示。这里的 pi 是可学习的。


Transformer Layer


主要包括 Multi-Head Self-Attention 层和 Position-Wise Feed-Forward Network,其中 Multi-Head Self-Attention 计算过程如下:



Position-Wise Feed-Forward Network 的作用是将每个位置(也可理解为每个时间刻 t)上的输入分别输入到前向神经网络中:



Stacking Transformer Layer


使用了类似于 resnet 的 skip 连接结构:



Output Layer


模型训练


因为在 BERT4Rec 中,输入历史序列[v1,v2,…,vt-1],输出的是包含上下文信息的向量[h1,h2,…,ht-1],这里每个向量 ht 都包含了整个序列的信息。如果要预测用户 t 时刻的交互物品 vt,如果直接把 vt 作为输入,那么其余每个物品在 Transformer Layer 中会看到目标物品 vt 的信息,造成一定程度的信息泄漏。因此可把对应位置的输入变成[mask]标记。打标记的方式和 BERT 一样,随机把输入序列的一部分遮盖住,然后让模型来预测这部分对应的商品:


最终的 loss 函数为:



4. Behavior Sequence Transformer


这里就不详细介绍了,可参考我之前的一篇文章:https://zhuanlan.zhihu.com/p/72018969

总结

transformer 结构可用于对用户短期内的行为序列进行建模(比如最近的 n 次行为序列),比起传统的 RNN、CNN 模型,transformer 的优势在于它在每个时刻 t 求得的隐藏向量 ht 都包含整个序列的信息(这其实就是 self-attention 结构的优势,可建模出任意一个时刻 item 和所有时刻 item 的相关性)。因此可将 transformer 结构用于用户的短期兴趣 embedding 建模,然后再将该 embedding 向量用于召回或者 ranking 阶段。


参考文献:


https://arxiv.org/pdf/1808.09781.pdf


https://arxiv.org/pdf/1808.06414.pdf


https://arxiv.org/pdf/1904.06690.pdf


https://arxiv.org/pdf/1905.06874.pdf


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/85825460


2019-11-29 08:003346

评论

发布
暂无评论
发现更多内容

Qt|实现简单的分割窗口

中国好公民st

qt 分割 9月月更

gopher成长之路(五): 2年前和2年后同一个项目

非晓为骁

个人成长

网络入侵检测系统之Suricata(十六)--类suricata/snort规则自动维护工具

于顾而言

网络安全 suricata

[Maven进阶]分模块开发与设计

十八岁讨厌编程

maven 后端开发 9月月更

Java进阶(二十七)使用Dom4j解析XML文件

No Silver Bullet

Java xml 9月月更 DOM4J

redis对应的数据类型及其底层原理

知识浅谈

redis 底层原理 9月月更

jQuery之实战

楠羽

笔记 JQuery框架 9月月更

[SpringMVC]拦截器②(拦截器参数、拦截器链配置)

十八岁讨厌编程

springmvc 后端开发 9月月更

利用flexible.js和VSCode插件cssrem进行可伸缩布局方案

海底烧烤店ai

前端 JavaScrip 响应式网页 9月月更

网络入侵检测系统之Suricata(十四)--匹配流程

于顾而言

网络安全 suricata

王者荣耀商城异地多活架构设计

张立奎

「趣学前端」Taro实践+踩坑记录第一期

叶一一

taro 前端 框架 9月月更

架构师的十八般武艺:架构目标

agnostic

架构目标

网络入侵检测系统之Suricata(十五)--IPOnly/Radix Tree详解

于顾而言

网络安全 suricata

一文带你快速入门【哈希表】

Fire_Shield

数据结构 哈希表 9月月更

架构师的十八般武艺:架构方法论

agnostic

TOGAF Zachman

大数据调度平台Airflow(一):什么是Airflow

Lansonli

9月月更

MyBatisPlus(四、代码生成器)

Mybatis-Plus 代码生成 9月月更

网络入侵检测系统之Suricata(十三)--网络安全威胁及攻击手段总览

于顾而言

网络安全 suricata

【算法实践】分块查找知多少?手把手带你实现分块查找

迷彩

数据结构 算法 9月月更 分块查找 查找算法

[SpringMVC]拦截器①(概述、入门案例)

十八岁讨厌编程

springmvc 后端开发 9月月更

「趣学前端」自己动手丰衣足食的TS项目开发

叶一一

typescript 前端 ts 9月月更

Flutter - Google 开源的移动 UI 框架

陈橘又青

9月月更

SAP UI5 Form 表单 Column Layout 下的 Column 个数分配问题

汪子熙

JavaScript Fiori SAP UI5 ui5 9月月更

Redis的事件

急需上岸的小谢

9月月更

4 张图了解 CI/CD 基础~

掘金安东尼

前端 9月月更

力扣93 - 复原IP地址【回溯算法】

Fire_Shield

LeetCode 字符串 9月月更

架构之美第一篇-概述

Marvin Ma

架构 企业架构 架构模式 架构三要素 架构发展历史

带你玩转NProgress进度条

海底烧烤店ai

前端 JavaScrip 9月月更

[极致用户体验] 微信设置大字号后,iOS加载网页时闪动怎么办?

HullQin

CSS JavaScript html 前端 9月月更

C++学习---cstdio的源码学习分析03-文件重命名函数rename

桑榆

c++ 源码阅读 9月月更

Transformer在推荐模型中的应用总结_语言 & 开发_Alex-zhai_InfoQ精选文章