写点什么

在迁移项目中,如何自动选择最经济的 EC2

  • 2019-09-29
  • 本文字数:3296 字

    阅读完需:约 11 分钟

在迁移项目中,如何自动选择最经济的EC2

需求背景

我们在上一篇文章中讲了如何利用 AWS Price List API 生成 EC2 价格表,现在,我们就讲讲如何利用这个价格表自动化的选择最经济的 EC2 类型。

方案概述

在做大规模迁移时,我们首先要做的是收集线下数据中心 X86 服务器的信息,最基本的例如 CPU 核数,CPU 峰值利用率,内存大小(GB),内存峰值利用率,操作系统类型。我们想根据这些基本信息估算一下在云上应该选择何种机型,以及一年的费用大约是多少。大多数客户在上云后都会购买一年标准 RI 实例以节省费用,所以我们就以一年全部预付费标准 RI 的价格作为选择机型的依据。选择机型的逻辑是:满足内存和 CPU 需求的最便宜的机型。


当然,由于我们买的是一年标准 RI 实例,在一年之内不可改变机型配置,所以也应该考虑预留一年的业务增长量。因此,在以上收集的基本信息的基础上,我们还要加上两条:我们期望的 CPU 利用率和内存利用率。举例来说,如果您目前的某个服务器的 CPU 和内存利用率是 90%和 80%, 您预计在一年内业务会有 20% 的增长(我们姑且认为业务增长与资源需求成正比),当前的 CPU 是 4 核,内存是 16GB。如果你希望当业务增长 20%后,服务器的 CPU 和内存的利用率维持现状,即 90%和 80%, 选择的 EC2 机型应该在运行现有负载时的期望 CPU 利用率是 90%/1.2=75%, 期望的内存利用率是 80%/1.2=67%。


还有一点需要考虑的就是应用系统的特性,是以计算能力为主的还是以内存大小为主。AWS EC2 最小的 CPU:内存配比是 1:2,最大的是 1:8。


  • 如果是以计算为主的,我们在选择服务器的时候只考虑满足 CPU 的计算能力,我们会挑选满足计算能力的最经济的 EC2,这时的 CPU:内存配置至少是 1:2 (当然,如果价格合适,我们也会选择 CPU:内存是 1:4 的机型。但是,前提条件是,CPU:内存=1:2 的服务器已经可以满足内存需要)。

  • 如果是以内存为主的,我们在选择服务器的时候只考虑满足内存的大小,我们会挑选满足内存需求的最经济的 EC2,这时的 CPU:内存配置至少是 1:4 (当然,如果价格合适,我们也会选择 CPU:内存是 1:8 的机型。但是,前提条件是,CPU:内存=1:4 的服务器已经可以满足 CPU 需要)。

  • *当然,你也可以要求同时满足内存和 CPU 的要求,那么这时的选择逻辑就是同时满足内存和 CPU 要求的最便宜的 EC2 机型。

  • 综上所述,做机型选择的输入项有以下几条:

  • | vcpu | cpu_rate |target_cpu_rat | ememory | memory_rate | target_mem_rate | prefer |source_os |

  • | ---- | ---- |----| ----| ---- |----| ---- |---- |


vcpu:源系统 CPU 核数(必选)


cpu_rate: 源系统 CPU 峰值利用率(可选),缺省为 100 (100%)


target_cpu_rate: 期望的 CPU 利用率(可选),缺省为 0.9(即 90%)


memory:源系统内存大小(GB)(必选)


memory_rate: 源系统内存峰值利用率(可选),缺省为 100 (100%)


target_mem_rate:期望的内存利用率(可选),缺省为 0.9(即 90%)


prefer:计算优化(c)、内存优化(m)或者同时考虑 CPU 和内存(c+m)(可选)缺省为 c+m


source_os: 源系统操作系统类型(可选),缺省为 Linux。如果是 BYOL 类型的,此处选择 Linux


可选项为:Linux,RHEL,SUSE,Windows


为了实现机型选择自动化,我们构造了一个新的 Python Library – select_ri.py。 select_ri.py 里面定义了一个 RI 类,还有两个方法:


1.select_ec2_by_type


2.select_ec2_by_config


注意:我们在上一篇文章中生成的价格文件 cn_ec2_standard_price.xlsx 需要与 select_ri.py 放在同一个目录下


这里我们先介绍第二个,第一个会在下一篇文章中介绍。


select_ec2_by_config 的功能是根据上面定义的输入项(Excel 格式记录),选择合适的 EC2 机型,输出如下信息:


target_type  target_vcpu  target_memory  target_price  target_ondemand 
target_type:目标EC2的类型
target_vcpu:目标EC2的CPU核数
target_memory:目标EC2的内存大小
target_price:目标EC2的一年标准RI实例价格
target_ondemand:目标EC2的On-Demand实例价格

输入参数:
input_row: Excel的行记录
location=’China (Beijing)’:缺省是Beijing Region,还可以选择China (Ningxia)
ec2_os=’Linux’:缺省是Linux
tenancy=’Shared’:缺省是Shared,还可以选择Dedicated,
preInstalledSw=’NA’:针对于Windows, 还可以选择SQL Ent,SQL Std,SQL Web
licenseModel=’No License required’:针对Windows,还可以选择Bring your own license
复制代码


如果在选择的机型上有要求,你也可以通过设置环境变量指定不选择哪些机型,例如:


os.environ['EXCLUDE_EC2_TYPE'] = "3,t"
复制代码


在目标机型中不选择 3 系列(c3,m3,r3)和 t(t2)系列的服务器。


在 select_ri.py 里面通过如下语句取得 Exclude 信息:


try:
exclude_list = os.getenv('EXCLUDE_EC2_TYPE').split(",")
except:
exclude_list = []
self.exclude = ""if exclude_list != []:
for exclude_type in exclude_list:
self.exclude = self.exclude + f'(type NOT LIKE \'%{exclude_type}%\') and '
复制代码


选择机型的逻辑是这样的:


q = "SELECT type,vcpu, memory,min(all_upfront_price_1yr)
FROM price_table
WHERE (vcpu >= {}) and (memory>={}) and (tenancy == '{}') and (location == '{}') and (os == '{}') and (all_upfront_price_1yr > 0) and {}{} and (license_model=='{}');".format(
t_vcpu, t_memory, tenancy, location, ec2_os, self.exclude, preInstalledSw_option, licenseModel)
复制代码


这里的 t_vcpu 的计算是这样的:


if (prefer.lower() == 'c') | (prefer.lower() == 'c+m') | (prefer.lower() == 'm+c'):
try:
return float(cpu_base) * float(cpu_rate) / 100 / target_cpu_rate
except TypeError:
return float(cpu_base)
else:
return 0(上面的cpu_base就是输入项中的vcpu(CPU核数))
复制代码


t_memory 的计算是这样的:


if (prefer.lower() == 'm') | (prefer.lower() == 'c+m') | (prefer.lower() == 'm+c'):
try:
return float(mem_base) * float(mem_rate) / 100 / target_mem_rate
except TypeError:
return float(mem_base)
else:
return 0
复制代码


为了验证一下效果,我们准备了如下 Excel 表格作为输入项:



输出结果如下:



使用的测试程序如下:


from select_ri import *
import pandas as pd

input = pd.read_excel("blog2_input.xlsx")
output = pd.DataFrame()

ri = RI()
for i in range(0, input.shape[0]):
row = pd.DataFrame(input.loc[[i]])
row = row.reset_index(drop=True)
result = ri.select_ec2_by_config(input_row=row)
output = output.append(result, ignore_index=True, sort=False)
output = pd.concat([input, output], axis=1, join_axes=[input.index])
print (output)
output.to_excel('blog2_output.xlsx', index=False)
复制代码


如果你没有收集到足够的信息,只是想初步评估一下迁移到云上的成本,那也没问题,最简单的输入信息如下:



你可以得到如下输出:



你也许很好奇,为什么目标服务器(r5 系列)都比实际要求的大呢,为什么不选择更小的 4 系列服务器呢?


那么我们就看看如果选择 4 系列服务器,成本是多少。 你可以通过定义环境变量来实现。


os.environ[‘EXCLUDE_EC2_TYPE’] = “5”

复制代码


运行结果如下:


仔细看看这两个输出文件中蓝色箭头所示的位置,这下你应该明白了吧,我们的程序真的是选择最经济的 EC2 机型!


本文中的完整程序可从这里下载:


https://github.com/shaneliuyx/awscnprice/tree/master/examples


————


如何自动化的选择和优化 EC2 系列(一)利用 AWS Price List API 生成中国区的 EC2 价格表


如何自动化的选择和优化 EC2 系列(二)在迁移项目中,如何自动选择最经济的 EC2(本博文)


如何自动化的选择和优化 EC2 系列(三)如何进行 EC2 优化,进一步优化成本


如何自动化的选择和优化 EC2 系列(四)如何为 SAP 应用选择合适的 EC2


如何自动化的选择和优化 EC2 系列(五)如何整合 RI 续购日期


作者介绍:


刘育新


AWS ProServe 团队高级顾问,长期从事企业客户入云解决方案的制定和项目的实施工作。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/how-to-choose-ec2-use-the-most-economic-one/


2019-09-29 16:31772
用户头像

发布了 1855 篇内容, 共 122.2 次阅读, 收获喜欢 79 次。

关注

评论

发布
暂无评论
发现更多内容

Go 让 Apache APISIX 如虎添翼

API7.ai 技术团队

Apache 开源 插件 APISIX Go 语言

厉害!GitHub星标70K阿里大佬手写的Spring Boot实战手册真不错

Java 编程 程序员 架构 计算机

如何在Android 8.0以下高效地复用图片?

爱奇艺技术产品团队

android 开发 图片存储

Qunar 酒店 NodeJS 覆盖率收集实践

Qunar技术沙龙

大前端 nodejs Node JavaScrip

赋能数据中心绿色低碳 浪潮云洲有实招

云计算

浅谈云上攻防——Kubelet访问控制机制与提权方法研究

腾讯安全云鼎实验室

k8s 云安全

排查指南 | 两个案例学会从埋点排查 iOS 离线包

蚂蚁集团移动开发平台 mPaaS

mPaaS

2021年8月数据库流行度排行:数据库道路漫漫其修远兮,为用户创造核心价值是正道

墨天轮

数据库 TiDB oceanbase 国产数据库 达梦

云原生的能源数据管理平台方案|EMQ 映云科技&华为云联合直播内容回顾

EMQ映云科技

华为云 能源 Cloud 碳中和 emq

凭借一份“面试真经pdf”,我四面字节跳动,拿下1-2级offer

Java 程序员 面试 后端 计算机

牛掰!“基础-中级-高级”Java程序员面试集结,看完献出我的膝盖

Java 编程 面试 IT 计算机

DevOps如何攻克研发流程六大痛点?

BoCloud博云

字节大牛的1850页Leetcode刷题笔记外泄!用实力折服众人

Java 程序员 字节跳动 面试 算法

深度解读鸿蒙轻内核CPU占用率

华为云开发者联盟

鸿蒙 cpu 任务 CPUP LiteO

万物皆为向量:在线向量召回工程服务化实践

爱奇艺技术产品团队

深度学习 推荐 向量

鲲鹏基础软件开发赛道openLooKeng赛题火热报名中,数十万大奖等您来收割

华为云开发者联盟

鲲鹏 openLooKeng

“性能混合架构”了解了吗?英特尔Alder Lake惊艳来袭

科技新消息

字节架构师离职后,熬夜整理55W字Java面试手册,逆风翻盘进阿里

Java 编程 程序员 架构 面试

记一次10人跨组织、跨地域的开源协作经历

腾源会

开源 腾讯 腾讯开源

使用 GitHub Issues 来写博客,真香。

彭宏豪95

GitHub 写作 博客

从头到尾没有一句废话!阿里Redis神级手册,从基础到源码

Java redis 编程 面试 阿里

进化十多年,四足机器人的网红属性有改变吗?

脑极体

Activiti数据库表结构

金陵老街

狂刷《Java权威面试指南(阿里版)》,冲击“金九银十”有望了

Java 程序员 架构 面试 大厂

超赞!GitHub上百万下载量Java面试手册!颠覆你的认知

Java~~~

Java 架构 面试 网络 架构师

基于java springboot vue活动报名系统源码(毕设)

清风

Java springboot elementUI 毕业设计

一周信创舆情观察(8.9~8.15)

统小信uos

替换及重置Homebrew默认源以及M1安装

一个大红包

8月日更

NodeJs深入浅出之旅:模块🌀

空城机

大前端 Node 8月日更

在华为P50 Pro中,听到AI异构通信的朱弦三叹

脑极体

千字真言,字字珠玑,我的Golang学习笔记,赤诚分享

奔着腾讯去

Go 语言

在迁移项目中,如何自动选择最经济的EC2_其他_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章