QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

多模块进行时: 同时使用 RedisGraph 和 RediSearch 模块

  • 2020-03-01
  • 本文字数:2713 字

    阅读完需:约 9 分钟

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块

在 2019 年的 RedisConf 会议上,我演示了一个在 RedisGraph 节点上进行全文 RediSearch 的解决方案。当时讲的有点模糊,但现在,我意识到我们应该解释一下我们是如何做到这一点并发布源代码。



在这个演示中我展示了一个小界面,它支持搜索动物并通过生物分类系统(界、门、类、目等)查看它们之间的关系。全文部分基于维基百科的第一段英文。例如,搜索“宠物猫”和“蓝鲸”,会发现他们都是哺乳动物,而如果搜索“宠物猫”和“雪豹”,则会发现他们都属于同一个科:猫科。


这个演示项目出乎意料地简单,但我应该指出 RediSearch 和 RedisGraph 之间的集成仍处于早期阶段,在编写本文时还没有准备好应用于生产环境。所以,我建议您在了解 RediSearch 和 RedisGraph 的集成将在未来几个月逐渐成熟的前提下,确定此方法是否能够满足您的需求。


让我们再讨论一下如何从源码构建。要完成的第一件事是基于代码库中正确的分支构建 RediSearch 和 RedisGraph。RediSearch 使用的是当前的主分支,而 RedisGraph 是 redisconf 分支。如果您想根据自己的需要构建解决方案,可以从源代码构建这两个模块。RedisGraph 和 RediSearch 的网站上都有关于如何构建的详细说明,这并不困难,只是需要一点时间。


配置模块的位置在 redis.conf 文件中,为了确保在 RediSearch 之前加载 RedisGraph,需要在 redis.conf 文件的模块部分将 RediSearch 的 loadmodule 配置项放在 RedisGraph 的 loadmodule 配置项之前。在完成编辑 redis.conf 之后,需要重启 Redis 服务器让配置生效。


在之前演示的 demo 中,我使用 RedisGraph-bulk-loader 脚本将以下内容从 CSV 加载到 RedisGraph,从而包括了我们收集的数据集。这个数据集只包括哺乳动物,因为其他动物的数据质量较低(非哺乳动物物种很少有好的维基百科描述)。


下面是加载数据的例子:


$ cd redisgraph-bulk-loader/$ python3 bulk_insert.py MAMMALS -q -n /path/to/demo/dataload/Class.csv -n/path/to/demo/dataload/Family.csv -n /path/to/demo/dataload/Genus.csv -n/path/to/demo/dataload/Order.csv -n /path/to/demo/dataload/Species.csv -r/path/to/demo/dataload/IN_CLASS.csv -r /path/to/demo/dataload/IN_FAMILY.csv -r/path/to/demo/dataload/IN_GENUS.csv -r /path/to/demo/dataload/IN_ORDER.csv -ayourpassword1 nodes created with label 'Class'157 nodes created with label 'Family'1272 nodes created with label 'Genus'29 nodes created with label 'Order'5616 nodes created with label 'Species'29 relations created for type 'IN_CLASS'1272 relations created for type 'IN_FAMILY'5616 relations created for type 'IN_GENUS'157 relations created for type 'IN_ORDER'Construction of graph 'MAMMALS' complete: 7075 nodes created, 7074 relationscreated in 0.443749 seconds$ redis-cli -a yourpassword GRAPH.QUERY MAMMALS "CALLdb.idx.fulltext.createNodeIndex('Species','description')"Warning: Using a password with '-a' or '-u' option on the command lineinterface may not be safe.1) (empty list or set)2) (empty list or set)3) 1) "Query internal execution time: 324.970000 milliseconds"
复制代码


(gist:https://gist.github.com/stockholmux/0727a4a784a46f8cb9e8329d393a513a)


在这里,key MAMMALS 包含了我们的整个图表。一些重要的注意事项:


•bulk_insert.py 上的-q 开关非常重要,因为它允许在读取 CSV 时进行智能引用。


•调用一次 redis-cli 对所有节点进行批量索引,从而为全文搜索摄取了 7000 多个文档。


现在让我们启动并运行一个 UI。和几乎所有 Node.js 应用程序一样,我们先安装 npm。安装大概需要几秒钟,因为我们不仅要管理 Node 的服务器端文件。还有前端的 Vue.js 组件。如果你最近没有花很多时间在前端 JavaScript 上,那你大概不能使用一个 FTP 和 HTML 文件来实现这些功能。所幸现代前端确实重视工具,所以我们可以安装 VueCLI(我建议遵循 Vue CLI 入门指南)。


在你的前端工具准备好过后,让我们继续来讲 npm 安装和启动运行前端上:


$ npm run build
复制代码


这将创建我们所有前端文件的 dist 目录。现在我们有数据在 Redis 里,我们的前端文件也准备好启动服务,所以我们可以连接 Redis 服务器:


$ node server.js -p 6379 -a yourpassword -hyourhostOrlocalhost
复制代码


让我们先讨论一下关于我们刚刚打开的这个服务器的一些问题。它构建在 Express.js 上,主要使用 WebSocket 进行通信。我还集成了可视化引擎调试工具,它允许您在单独的浏览器窗口中查看正在执行的命令。你可以把浏览器指向地址:http://localhost:4444


总之,相对于它所实现的功能来说,它非常的简短——只有 75 行代码。我们的解决方案不需要那么长,因为我们实际上所做的就是接受 WebSocket 连接,根据传递的消息运行 Redis 命令,然后将这些消息与结果一起传递回来。Redis(Graph)做了所有复杂的工作。让我们看看正在执行的命令。


为了搜索关键字,我们运行这个命令:


> GRAPH.QUERY MAMMALS"CALL db.idx.fulltext.queryNodes('Species','cat house pet')"
复制代码


这很简单。我们的键是哺乳动物,我们使用一个特殊的语法调用了一个特定的函数,它的第一个参数是我们要查找的节点的标签,另一个参数是实际要搜索的字符串。您可以传递有效的 RediSearch 参数进行查询,但请记住,目前这只是全文本搜索,因此不要使用地理空间、标记或数字子句。


一旦我们确定了我们要比较的两种动物,我们就可以使用一个简单的命令进行查询:


GRAPH.QUERY MAMMALS"MATCH (s:Species)-[]->(x)<-[]-(c:Species) WHERE c.fullname =‘Felis catus’ AND s.fullname = ‘Balaenoptera borealis’ RETURN x.name,labels(x) LIMIT 1"

在 server.js 文件中,这些查询被表示为 JavaScript 模板字符串,没有对用户隐藏,用户输入的字符串被直接插入到输入中进行查询。但如果在生产环境中部署类似这样的东西,就需要小心接收和校验用户输入。

如果打算修改前端代码,请确保编辑的是/src 目录,而不是/dist。编辑之后,您需要再次运行 npmrun build 或使用开发服务器(npmrun serve),该服务器自动编译对前端代码的更改,并将其提供给另一个端口。这是一个非常标准的 Vue.js 和 Bootstrap 应用。唯一真正相关的文件是:

/src/App.js, /src/components/panels.vue and /src/components/search.vue.

以上就是一个简单的功能强大的 demo,集成了两个不同的 Redismodule:RediSearch 和 RedisGraph。我鼓励你使用你自己数据集来体验这个 demo。


本文转载自 中间件小哥 公众号。


原文链接:https://mp.weixin.qq.com/s/dbqatouGwg0P_L9_SR5v_Q


2020-03-01 21:42877

评论

发布
暂无评论
发现更多内容

什么是BOM?与焊盘不匹配,怎么办?

华秋电子

Zebec完成BNB Chain以及Near链上协议部署,多链化进程加速

西柚子

中国一级市场5年完成1039个投融资事件;红杉中国、启明创投、高瓴创投在2022年最为活跃-创业邦发布《2022年合成生物学产业投资报告》

创业邦

Java高手速成 | 图说重定向与转发

TiAmo

Java 重定向

Python+Opencv解析一段视频并逐帧保存到本地

Python 数据读取 摄像头

压电石英晶体谐振器,国产替代需求强劲

华秋电子

Serverless Streaming:毫秒级流式大文件处理探秘

华为云开发者联盟

云计算 大数据 华为云 企业号 2 月 PK 榜 华为云开发者联盟

火山引擎入选《2022爱分析 · DataOps厂商全景报告》,旗下DataLeap产品能力获认可

字节跳动数据平台

大数据 云服务 数据产品

应用部署初探:6个保障安全的最佳实践

SEAL安全

应用部署 企业号 2 月 PK 榜 安全部署

Python读execl之xlrd库函数详解三:行、列相关

Python Excel 数据读取

精选案例 |《金融电子化》:光大银行云原生背景下的运维监控体系建设

博睿数据

云原生 可观测性 智能运维 博睿数据 精选案例

优质的云管平台厂商重点推荐-行云管家

行云管家

云计算 云管平台 行云管家

面试官:熔断和降级有什么区别?

小小怪下士

Java 后端 熔断

Python读execl之xlrd库函数详解二:单元格相关

Python Excel 数据读取

从“服务”,到“赋能”,日日顺再次定义供应链生态建设

联营汇聚

详解 APISIX Lua 动态调试插件 inspect

API7.ai 技术团队

插件 api 网关 APISIX

Selenium WebDriver API 学习笔记(二):浏览器控制

Python 自动化测试 selenium

公司项目引入这种方式,开发应用又快又准

引迈信息

项目管理 程序员 敏捷开发 低代码

Outcome VS. Output:研发效能提升中,谁会更胜一筹?

LigaAI

敏捷开发 研发管理 技术管理 产品管理 企业号 2 月 PK 榜

世界上最健康的程序员作息表!「值得一看」

王中阳Go

golang 高效工作 学习方法 程序员 作息时间

小白指南:手把手教你用低代码开发一个应用页面

HarmonyOS开发者

HarmonyOS

Selenium WebDriver API 学习笔记(一):元素定位

Python 自动化测试 selenium

Selenium WebDriver API 学习笔记(三):浏览器控制

Python 自动化测试 selenium

普通单双面板的生产工艺流程:图形转移

华秋电子

低代码实现探索(五十六)低代码正确方式

零道云-混合式低代码平台

WebUI自动化环境搭建

Python 自动化测试 selenium

组装式专家洞察|中国移动初瑞:基于智慧中台的“组装式”探索实践

信通院IOMM数字化转型团队

组装式应用 组装式创新 IOMM

成都市信息安全等级保护测评机构详细名单汇总

行云管家

成都 等保 等级保护 等保测评

SVFormer:走进半监督动作识别的视觉 Transformer

Zilliz

计算机视觉 Transformer

腾讯云助力东宁智慧农业发展,共探乡村振兴产业数字化创新

科技热闻

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块_行业深度_翻译自redis.io_InfoQ精选文章