写点什么

多模块进行时: 同时使用 RedisGraph 和 RediSearch 模块

  • 2020-03-01
  • 本文字数:2713 字

    阅读完需:约 9 分钟

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块

在 2019 年的 RedisConf 会议上,我演示了一个在 RedisGraph 节点上进行全文 RediSearch 的解决方案。当时讲的有点模糊,但现在,我意识到我们应该解释一下我们是如何做到这一点并发布源代码。



在这个演示中我展示了一个小界面,它支持搜索动物并通过生物分类系统(界、门、类、目等)查看它们之间的关系。全文部分基于维基百科的第一段英文。例如,搜索“宠物猫”和“蓝鲸”,会发现他们都是哺乳动物,而如果搜索“宠物猫”和“雪豹”,则会发现他们都属于同一个科:猫科。


这个演示项目出乎意料地简单,但我应该指出 RediSearch 和 RedisGraph 之间的集成仍处于早期阶段,在编写本文时还没有准备好应用于生产环境。所以,我建议您在了解 RediSearch 和 RedisGraph 的集成将在未来几个月逐渐成熟的前提下,确定此方法是否能够满足您的需求。


让我们再讨论一下如何从源码构建。要完成的第一件事是基于代码库中正确的分支构建 RediSearch 和 RedisGraph。RediSearch 使用的是当前的主分支,而 RedisGraph 是 redisconf 分支。如果您想根据自己的需要构建解决方案,可以从源代码构建这两个模块。RedisGraph 和 RediSearch 的网站上都有关于如何构建的详细说明,这并不困难,只是需要一点时间。


配置模块的位置在 redis.conf 文件中,为了确保在 RediSearch 之前加载 RedisGraph,需要在 redis.conf 文件的模块部分将 RediSearch 的 loadmodule 配置项放在 RedisGraph 的 loadmodule 配置项之前。在完成编辑 redis.conf 之后,需要重启 Redis 服务器让配置生效。


在之前演示的 demo 中,我使用 RedisGraph-bulk-loader 脚本将以下内容从 CSV 加载到 RedisGraph,从而包括了我们收集的数据集。这个数据集只包括哺乳动物,因为其他动物的数据质量较低(非哺乳动物物种很少有好的维基百科描述)。


下面是加载数据的例子:


$ cd redisgraph-bulk-loader/$ python3 bulk_insert.py MAMMALS -q -n /path/to/demo/dataload/Class.csv -n/path/to/demo/dataload/Family.csv -n /path/to/demo/dataload/Genus.csv -n/path/to/demo/dataload/Order.csv -n /path/to/demo/dataload/Species.csv -r/path/to/demo/dataload/IN_CLASS.csv -r /path/to/demo/dataload/IN_FAMILY.csv -r/path/to/demo/dataload/IN_GENUS.csv -r /path/to/demo/dataload/IN_ORDER.csv -ayourpassword1 nodes created with label 'Class'157 nodes created with label 'Family'1272 nodes created with label 'Genus'29 nodes created with label 'Order'5616 nodes created with label 'Species'29 relations created for type 'IN_CLASS'1272 relations created for type 'IN_FAMILY'5616 relations created for type 'IN_GENUS'157 relations created for type 'IN_ORDER'Construction of graph 'MAMMALS' complete: 7075 nodes created, 7074 relationscreated in 0.443749 seconds$ redis-cli -a yourpassword GRAPH.QUERY MAMMALS "CALLdb.idx.fulltext.createNodeIndex('Species','description')"Warning: Using a password with '-a' or '-u' option on the command lineinterface may not be safe.1) (empty list or set)2) (empty list or set)3) 1) "Query internal execution time: 324.970000 milliseconds"
复制代码


(gist:https://gist.github.com/stockholmux/0727a4a784a46f8cb9e8329d393a513a)


在这里,key MAMMALS 包含了我们的整个图表。一些重要的注意事项:


•bulk_insert.py 上的-q 开关非常重要,因为它允许在读取 CSV 时进行智能引用。


•调用一次 redis-cli 对所有节点进行批量索引,从而为全文搜索摄取了 7000 多个文档。


现在让我们启动并运行一个 UI。和几乎所有 Node.js 应用程序一样,我们先安装 npm。安装大概需要几秒钟,因为我们不仅要管理 Node 的服务器端文件。还有前端的 Vue.js 组件。如果你最近没有花很多时间在前端 JavaScript 上,那你大概不能使用一个 FTP 和 HTML 文件来实现这些功能。所幸现代前端确实重视工具,所以我们可以安装 VueCLI(我建议遵循 Vue CLI 入门指南)。


在你的前端工具准备好过后,让我们继续来讲 npm 安装和启动运行前端上:


$ npm run build
复制代码


这将创建我们所有前端文件的 dist 目录。现在我们有数据在 Redis 里,我们的前端文件也准备好启动服务,所以我们可以连接 Redis 服务器:


$ node server.js -p 6379 -a yourpassword -hyourhostOrlocalhost
复制代码


让我们先讨论一下关于我们刚刚打开的这个服务器的一些问题。它构建在 Express.js 上,主要使用 WebSocket 进行通信。我还集成了可视化引擎调试工具,它允许您在单独的浏览器窗口中查看正在执行的命令。你可以把浏览器指向地址:http://localhost:4444


总之,相对于它所实现的功能来说,它非常的简短——只有 75 行代码。我们的解决方案不需要那么长,因为我们实际上所做的就是接受 WebSocket 连接,根据传递的消息运行 Redis 命令,然后将这些消息与结果一起传递回来。Redis(Graph)做了所有复杂的工作。让我们看看正在执行的命令。


为了搜索关键字,我们运行这个命令:


> GRAPH.QUERY MAMMALS"CALL db.idx.fulltext.queryNodes('Species','cat house pet')"
复制代码


这很简单。我们的键是哺乳动物,我们使用一个特殊的语法调用了一个特定的函数,它的第一个参数是我们要查找的节点的标签,另一个参数是实际要搜索的字符串。您可以传递有效的 RediSearch 参数进行查询,但请记住,目前这只是全文本搜索,因此不要使用地理空间、标记或数字子句。


一旦我们确定了我们要比较的两种动物,我们就可以使用一个简单的命令进行查询:


GRAPH.QUERY MAMMALS"MATCH (s:Species)-[]->(x)<-[]-(c:Species) WHERE c.fullname =‘Felis catus’ AND s.fullname = ‘Balaenoptera borealis’ RETURN x.name,labels(x) LIMIT 1"

在 server.js 文件中,这些查询被表示为 JavaScript 模板字符串,没有对用户隐藏,用户输入的字符串被直接插入到输入中进行查询。但如果在生产环境中部署类似这样的东西,就需要小心接收和校验用户输入。

如果打算修改前端代码,请确保编辑的是/src 目录,而不是/dist。编辑之后,您需要再次运行 npmrun build 或使用开发服务器(npmrun serve),该服务器自动编译对前端代码的更改,并将其提供给另一个端口。这是一个非常标准的 Vue.js 和 Bootstrap 应用。唯一真正相关的文件是:

/src/App.js, /src/components/panels.vue and /src/components/search.vue.

以上就是一个简单的功能强大的 demo,集成了两个不同的 Redismodule:RediSearch 和 RedisGraph。我鼓励你使用你自己数据集来体验这个 demo。


本文转载自 中间件小哥 公众号。


原文链接:https://mp.weixin.qq.com/s/dbqatouGwg0P_L9_SR5v_Q


2020-03-01 21:42894

评论

发布
暂无评论
发现更多内容

强化学习基础篇[2]:SARSA、Q-learning算法简介、应用举例、优缺点

汀丶人工智能

人工智能 深度学习 强化学习

手把手实践丨基于STM32+华为云设计的智慧烟感系统

华为云开发者联盟

云计算 华为云 华为云开发者联盟 企业号 6 月 PK 榜

TiDB集群数据库灾难恢复手册

TiDB 社区干货传送门

管理与运维 备份 & 恢复

TiDB 落地SAS机器实践

TiDB 社区干货传送门

实践案例 应用适配 HTAP 场景实践

人工智能工程总体介绍

紫晖

人工智能 软件工程 数据开发

TiDB数据迁移实践DM工具

TiDB 社区干货传送门

迁移 实践案例

强化学习基础篇【1】:基础知识点、马尔科夫决策过程、蒙特卡洛策略梯度定理、REINFORCE 算法

汀丶人工智能

人工智能 深度学习 强化学习

行云堡垒V7亮点有哪些?具体看这里!

行云管家

IT运维 行云堡垒

客服都要下岗了? 当ChatGPT遇见私有数据,秒变AI智能客服!

BeeWorks

重新思考流处理与流数据库

吴英骏

开源 云原生 流处理 ​Rust 实时数据库

BFF层聚合查询服务异步改造及治理实践 | 京东云技术团队

京东科技开发者

优化技巧 企业号 6 月 PK 榜 BFF层 异步优化

堡垒机重要吗?为什么?求解!

行云管家

堡垒机 安全运维 录像审计

一文读懂责任分配矩阵,解决你80%的项目难题

敏捷开发

项目管理 Scrum 敏捷开发 责任分配矩阵 RACI矩阵

亿级大表毫秒关联,荔枝微课基于腾讯云数据仓库Doris的统一实时数仓建设实践

科技热闻

圣邦股份:品类持续深挖,高端加速推进,模拟龙头稳健发展

华秋电子

玩转服务器之应用篇:从零开始构建小型高可用环境

京东科技开发者

高可用 云主机 云服务器 企业号 6 月 PK 榜

这本数智平台白皮书讲透了大型企业数智化升级业务痛点

用友BIP

白皮书 数智底座 数智平台 平台白皮书 数智化转型白皮书

【5.26-6.02】写作社区优秀技术博文一览

InfoQ写作社区官方

热门活动 优质创作周报

单点登录的三种实现方式

Authing

SSO 单点登录

CodeWhisperer 初体验

天黑黑

AI 亚马逊云 CodeWhisperer

复杂Flink任务Task均衡调度和优化措施

Openlab_cosmoplat

大数据

rocketmq4 docker安装 阿里云linux2(centos7)

folo

Docker centos RocketMQ部署

大型 3D 互动开发和优化实践 | 京东云技术团队

京东科技开发者

游戏 3D 企业号 6 月 PK 榜 互动游戏

让AI无处不在!Intel拿出全新VPU:超高能效碾压GPU

E科讯

我又和redis超时杠上了

蓝胖子的编程梦

redis 性能分析 云服务器 线上事故 接口超时

世界500强开滦集团的财务共享建设路径

用友BIP

财务共享

含有CPU芯片的PCB设计需要考虑的五个主要方面

华秋电子

一次网络请求中的流量分发过程 | 京东云技术团队

京东科技开发者

数据传输 企业号 6 月 PK 榜 流量分发 网络请求

简洁实用的文本编辑器:FSNotes中文版

真大的脸盆

Mac Mac 软件 文本编辑器 文本管理 文本处理工具

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块_行业深度_翻译自redis.io_InfoQ精选文章