HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

面向大规模 AI 在线推理的可靠性设计

  • 2019-11-11
  • 本文字数:3066 字

    阅读完需:约 10 分钟

面向大规模AI在线推理的可靠性设计

概览

在 AI 项目中,大多时候开发者的关注点都集中在如何进行训练、如何调优模型、如何达到满意的识别率上面。但对于一个完整项目来说,通常是需求推动项目,同时,项目也最终要落到实际业务中来满足需求。


对于常用的 AI 训练和机器学习工具如 TensorFlow,它本身也提供了 AI Serving 工具 TensorFlow Serving。利用此工具,可以将训练好的模型简单保存为模型文件,然后通过的脚本在 TensorFlow Serving 加载模型,输入待推理数据,得到推理结果。


但与拥有较固定计算周期和运行时长的 AI 训练不同,AI 推理的调用会随着业务的涨落而涨落,经常出现类似白天高、夜间低的现象。且在大规模高并发的节点需求情况下,常规的部署方案,明显无法满足此类需求,此时需要使用更专业的 AI 推理模型和扩缩容、负载均衡等技术完成预测推理。


UAI-Inference 采用类似 Serverless 的架构,通过请求调度算法、定制扩缩容策略,自动完成 AI 请求的负载均衡,实行节点动态扩容和回收,可提供数万的 AI 在线推理服务节点。

某 AI 在线推理一天内的请求访问情况

AI 推理(Inference)的在线执行有两大关键因素:一是通过 GPU/CPU 对数据进行快速决策,二是对访问请求的实时响应。下图为某一 AI 在线推理场景 24 小时内的资源使用情况,其中,横轴为时间、纵轴为用户资源请求量,橙色线现表示资源配置情况。



凌晨 00:00-8:00 点,用户基本处于睡眠状态,此刻的资源请求较少,闲置资源较多;8:00 以后,手机等设备使用量增多,推理访问请求逐渐上升;直至中午,设备访问达到高峰,请求量超过设定的资源量,系统纺问出现延迟;之后在线使用量降低,部分资源又将闲置……


可以看到,一天内不同的时间段,访问量会随着用户作息规律而出现相应的起伏,若是将资源配置设置过小,则会导致计算资源不足,系统吞吐量变低,致使访问延迟。但若投入过多的配置,又会产生大量的闲置资源,增加成本。

面向大规模的 AI 分布式在线推理设计与实现

UAI-Inference 整体架构

为了应对在线推理对实时扩缩容以及大规模节点的需求,UAI-Inference 在每一台虚拟机上都部署一个 AI 在线服务计算节点,以类似 Serverless 的架构,通过 SDK 工具包和 AI 在线服务 PaaS 平台,来加载训练模型并处理推理(Inference)请求。整体架构如下:



SDK 工具包:主要负责模型加载。包含接口代码框架、代码和数据打包模板以及第三方依赖库描述模板。用户根据 SDK 工具包内的代码框架编写接口代码,准备好相关代码和 AI 模型以及第三方库列表,然后通过打包工具将训练模型进行打包。


任务打包完毕后,系统自动将业务部署在 AI 在线推理 PaaS 平台上处理推理请求。这里,平台每个计算节点都是同构的,节点具有相等的计算能力,以保证系统的负载均衡能力。此外,动态扩缩容、分布式容灾等弹性可靠设计也是基于该平台实现。

在线推理实现原理

在实现上,系统主要采用 CPU/GPU 计算节点来提供推理任务的基础算力,通过 Docker 容器技术封装训练任务,内置 Django Server 来接受外部 HTTP 请求。下图展现了处理请求的简单原理与流程:



在初始化过程中(init),Django Server 会先根据 conf.json 加载 AI Inference 模块,然后调用该模块的 load_model 将 AI 模型加载到 Django HTTP 服务器中;在处理推理请求时,Django 服务器会接受外部的 HTTP 请求,然后再调用 execute 函数来执行推理任务并返回结果。


这里,采用容器技术的好处是可以将运行环境完全隔离,不同任务之间不会产生软件冲突,只要这些 AI 服务在平台节点上运行满足延时要求,就可进行 AI 在线推理服务部署。

功能特性

UAI-Inference 适用于常见的大规模 AI 在线服务场景,如图像识别、自然语言处理等等。整体而言,该系统具有以下功能特点:


  • 面向 AI 开发:通过预制的 NVIDIA GPU 执行环境和容器镜像,UAI-Inference 提供基于 Docker 的 HTTP 在线服务基础镜像,支持 TensorFlow、Keras、Caffe、MXNet 多种 AI 框架,能快速 AI 算法的在线推理服务化。

  • 海量计算资源:拥有十万核级别计算资源池,可以充分保障计算资源需求。且系统按照实际计算资源消耗收费,无需担心资源闲置浪费。

  • 弹性伸缩、快速扩容:随着业务的高峰和低峰,系统自动调整计算资源配比,对计算集群进行横向扩展和回缩。

  • 服务高可用:计算节点集群化,提供全系统容灾保障,无需担心单点错误。

  • 用户隔离:通过 Docker 容器技术,将多用户存储、网络、计算资源隔离,具有安全可靠的特性。

  • 简单易用:支持可视化业务管理和监控,操作简单。

在线推理的可靠性设计

因为推理请求是随着访问量的变化而变化的,因此,在线推理的可靠性设计,考虑以下几点:1)充足资源池,保证在高并发情况下,系统拥有足够的计算资源使请求访问正常;2)负载均衡:将请求合理的分配到各节点当中;3)请求调度算法:用于计算资源的实时调度;4)性能监控:查看用户访问状态,为系统扩缩容做参考;5)高可用部署:保证在单节点宕机时,系统能够正常运行。

负载均衡

UAI-Inference 为每个在线服务提供了自动负载均衡能力,当用户提交同构、独立的 AI 在线推理容器镜像时,平台会根据请求的负载创建多个计算节点,并使用负载均衡技术将请求转发到计算集群中。



如图所示,负载均衡主要包括网络层和转发层。网络层中,同一个交换机(IP)可以接多个后端节点,通过请求调度算法将请求分配到各个计算节点当中。调度算法可以采用 Hashing、RR(Round Robin)、Shortest Expected Delay 等,其中,Hashing 适用于长链接请求,Shortest Expected Delay 适用于短链接请求。目前,UAI-Inference 采用 RR 的方式在计算节点间调度请求。整个系统最底层是一个统一的资源池,用以保证充足的计算资源。

动态扩缩容

在实现扩容之前,需要通过监控了解各节点当前的在线推理状态,这里,主要是通过实时收集节点的负载(CPU、内存)、请求的 QPS 和延时信息,来制定动态的扩容和缩容策略。


系统状态实时监控

此外,UAI-Inference 系统将 HTTP 请求、延时和 HTTP 返回码实时记录成日志,然后通过数据统计来在图形界面展示 HTTP 请求量、延时、成功率等信息。平台会实时收集所有计算节点的 stdout 数据,并录入日志系统,用户可以通过观察线上运行日志来了解线上运行状态,并根据监控信息自动选择扩容和缩容。

高可用

除了基本的扩缩容和负载均衡,我们也通过将计算节点集群化的方式,提供全系统容灾保障。如下图所示,系统会把整个服务切分成多个 set,部署在跨机房的某几个机架或者区域里面,当某一个机房或者 set 宕机时,其他地区的在线推理处理还在进行。这种方式的好处是当出现单点故障时,其他区域的计算节点能够保证整个在线推理请求的正常执行,避免因单节点故障导致的系统不可用。


总结

本文通过对 UAI-Inference 的实现原理、架构设计以及弹性扩缩容、负载均衡、高可用等可靠策略的介绍,讲解了大规模、高并发在线推理请求时,UCloud 的部分解决策略和方案。希望能够抛砖引玉,为其他开发者做 AI 在线推理部署时带来新的思路。


截止目前,UAI-Inference 提供了 CPU/GPU 数万节点的在线推理服务。未来,我们会兼顾高性能在线服务和高性价比的在线服务两个方向,同时提供针对 GPU 硬件和 CPU 硬件的优化技术,进一步提升在线服务的效率。同时也会着力于公有云和私有云的结合,后期将会推出私有云的在线推理服务。


作者介绍:


宋翔,UCloud 高级研发工程师。负责 UCloud AI 产品的研发和运营工作,曾先后于系统领域顶级会议 Eurosys、Usinex ATC 等发表论文,在系统体系架构方面具有丰富的经验。


本文转载自公众号 UCloud 技术(ID:ucloud_tech)。


原文链接:


https://mp.weixin.qq.com/s/Ehb2cRH549Wb29ErkyAR9w


2019-11-11 17:441339

评论

发布
暂无评论
发现更多内容

国外顶级架构师编写2580页DDD领域驱动设计笔记,看到内容后破防了

做梦都在改BUG

Java 架构 领域驱动设计 DDD

袋鼠云春季生长大会圆满落幕,带来数实融合下的新产品、新方案、新实践!

袋鼠云数栈

数字化转型

架构误区系列16:不可靠的幂等

agnostic

幂等设计

2023 最新版 Java 面试八股文大全 PDF 版限时分享,含 700 道高频面试题

三十而立

iMazing软件最新版有哪些新功能?

茶色酒

imazing

拥抱Serverless释放生产力,探索华为云Serverless车联网最佳实践

华为云开发者联盟

Serverless 车联网 华为云 华为云开发者联盟 企业号 4 月 PK 榜

各行业常见的业务指标汇总(数据分析常用数据指标)

Data 探险实验室

数据分析 数据分析师 数据指标 指标中台; 数据分析 指标洞察

预训练对话大模型深度解读

轻口味

AI 大模型 三周年连更

引领文旅新体验!3DCAT实时云渲染助力打造“永不落幕”的湾区文采会元宇宙

3DCAT实时渲染

元宇宙 元宇宙线上虚拟展厅 VR虚拟现实

基于深度学习框架设计的货运管家(功能总结)

DS小龙哥

三周年连更

直播预告 | 字节跳动云原生大数据分析引擎 ByConity 与 ClickHouse 有何差异?

墨天轮

大数据 字节跳动 Clickhouse 数仓

为什么医疗保健需要MFT来帮助保护EHR文件传输

镭速

Sibelius2023免费版音乐制谱软件

茶色酒

Sibelius2023

CorelDRAW Graphics Suite2023最新中文版下载

茶色酒

cdr2023

【转载】三十而已,信智依然 | 田溯宁:写在亚信科技30华诞

亚信AntDB数据库

AntDB AntDB数据库 企业号 4 月 PK 榜

Tuxera NTFS2024免费版NTFS磁盘读写软件

茶色酒

Tuxera NTFS2024

JVM调优-Nacos GC引发的服务批量下线问题

程序员小毕

程序员 微服务 后端 nacos jvm调优

MobTech MobPush|A/B测试提升运营决策

MobTech袤博科技

一图读懂|ONES X 中国信通院《中国企业软件研发管理白皮书》

万事ONES

ARB链挖矿dapp系统开发模式定制

开发v-hkkf5566

基于容器平台 ACK 快速搭建 Stable Diffusion

阿里巴巴云原生

阿里云 云原生 容器服务

精髓!不愧为京东内部 Spring Boot 全解笔记

程序知音

Java 微服务 后端 springboot Java进阶

亮点预告!金蝶云·苍穹技术开放日第五期AI专场邀你围观!

金蝶云·苍穹

AI RPA 直播 企业云服务 ChatGPT

阿里最新 23版 Java 面试系列手册,竟堪称 GitHub 面试杀手锏

程序知音

Java java面试 后端技术 Java面试题 Java面试八股文

2023Java后端面试最全攻略,一周刷完500道Java面试题,你就可以进大厂

采菊东篱下

面试

CDR2023最新中文版下载安装详细教程

茶色酒

cdr2023

爆肝了!阿里最新版的这份Spring Security源码手册,狂揽GitHub榜首

做梦都在改BUG

Java spring spring security

CorelDRAW2023发布!详解七大新功能

茶色酒

CorelDraw2023

Cloud Kernel SIG月度动态:发布 Anolis 8.8 镜像、kABI 社区共建流程

OpenAnolis小助手

镜像 龙蜥社区 sig kernel 月报

活动回顾|微服务x容器开源开发者 Meetup 成都站回放 & PPT 下载

阿里巴巴云原生

阿里云 开源 容器 微服务 云原生

面向大规模AI在线推理的可靠性设计_文化 & 方法_宋翔_InfoQ精选文章