写点什么

用 Python 从零开始构建 ResNet

  • 2021-06-09
  • 本文字数:3473 字

    阅读完需:约 11 分钟

用Python从零开始构建ResNet

近年来,深度学习和计算机视觉领域取得了一系列突破。特别是行业引入了非常深的卷积神经网络后,在这些模型的帮助下,图像识别和图像分类等问题取得了非常好的成果。


因此这些年来,深度学习架构变得越来越深(层越来越多)以解决越来越复杂的任务,这也有助于提高分类和识别任务的性能,并让它们表现稳健。


但当我们继续向神经网络添加更多层时,模型训练起来也越来越困难,模型的准确度开始饱和,然后还会下降。于是 ResNet 诞生了,让我们摆脱了这种窘境,并能帮助解决这个问题。

什么是 ResNet?

残差网络(ResNet)是著名的深度学习模型之一,由任少清、何开明、孙健和张翔宇在他们的论文中引入。这篇 2015 年的论文全名叫“Deep Residual Learning for Image Recognition”[1]。ResNet 模型是迄今为止广泛流行和最成功的深度学习模型之一。

残差块

随着这些残差(Residual)块的引入,训练非常深的网络时面临的问题得到了缓解,ResNet 模型由这些块组成。



来源:“图像识别的深度残差学习”论文


随着这些残差块的引入,训练非常深的网络时面临的问题得到了缓解,ResNet 模型由这些块组成。


在上图中,我们可以注意到的第一件事是跳过模型的某些层的直接连接。这种连接称为“跳过连接”,是残差块的核心。由于存在这种跳过连接,输出是不相同的。如果没有跳过连接,输入‘X 将乘以层的权重,然后添加一个偏置项。


然后是激活函数 f(),我们得到输出为 H(x)。


H(x)=f(wx+b)或 H(x)=f(x)


现在引入了新的跳过连接技术,输出 H(x)更改为


H(x)=f(x)+x


但是输入的维度可能与输出的维度不同,这可能发生在卷积层或池化层中。因此,这个问题可以用这两种方法来处理:


  • 用跳过连接填充零以增加其维度。

  • 1×1 卷积层被添加到输入以匹配维度。在这种情况下,输出为:


H(x)=f(x)+w1.x


这里添加了一个额外的参数 w1,而在使用第一种方法时没有添加额外的参数。


ResNet 中的这些跳过连接技术通过梯度流经的替代快捷路径来解决深度 CNN 中梯度消失的问题。此外,如果有任何层损害了架构的性能,跳过连接也能起作用,它将被正则化跳过。

ResNet 的架构

架构中有一个 34 层的普通网络,其灵感来自 VGG-19,其中添加了快捷连接或跳过连接。这些跳过连接或残差块将架构转换为残差网络,如下图所示。



来源:“图像识别的深度残差学习”论文

将 ResNet 与 Keras 结合使用:

Keras 是一个开源深度学习库,能够在 TensorFlow 上运行。Keras Applications 提供以下 ResNet 版本。


  • ResNet50

  • ResNet50V2

  • ResNet101

  • ResNet101V2

  • ResNet152

  • ResNet152V2

让我们从零开始构建 ResNet:


来源:“图像识别的深度残差学习”论文


我们将上图作为参考,开始构建网络。


ResNet 架构多次使用 CNN 块,因此我们为 CNN 块创建一个类,它接受输入通道和输出通道。每个 conv 层之后都有一个 batchnorm2d。


import torchimport torch.nn as nn
复制代码


class block(nn.Module):def __init__(self, in_channels, intermediate_channels, identity_downsample=None, stride=1):super(block, self).__init__()self.expansion = 4self.conv1 = nn.Conv2d(in_channels, intermediate_channels, kernel_size=1, stride=1, padding=0, bias=False)self.bn1 = nn.BatchNorm2d(intermediate_channels)self.conv2 = nn.Conv2d(intermediate_channels,intermediate_channels,kernel_size=3,stride=stride,padding=1,bias=False)self.bn2 = nn.BatchNorm2d(intermediate_channels)self.conv3 = nn.Conv2d(intermediate_channels,intermediate_channels * self.expansion,kernel_size=1,stride=1,padding=0,bias=False)self.bn3 = nn.BatchNorm2d(intermediate_channels * self.expansion)self.relu = nn.ReLU()self.identity_downsample = identity_downsampleself.stride = stridedef forward(self, x):identity = x.clone()x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x = self.relu(x)x = self.conv3(x)x = self.bn3(x)if self.identity_downsample is not None:identity = self.identity_downsample(identity)x += identityx = self.relu(x)return x
复制代码


然后创建一个 ResNet 类,它接受许多块、层、图像通道和类数的输入。在下面的代码中,函数‘_make_layer’


创建 ResNet 层,它接受块的输入、残差块数、输出通道和步幅。


class ResNet(nn.Module):def __init__(self, block, layers, image_channels, num_classes):super(ResNet, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU()self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
复制代码


# Essentially the entire ResNet architecture are in these 4 lines belowself.layer1 = self._make_layer(block, layers[0], intermediate_channels=64, stride=1)self.layer2 = self._make_layer(block, layers[1], intermediate_channels=128, stride=2)self.layer3 = self._make_layer(block, layers[2], intermediate_channels=256, stride=2)self.layer4 = self._make_layer(block, layers[3], intermediate_channels=512, stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * 4, num_classes)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.reshape(x.shape[0], -1)x = self.fc(x)return xdef _make_layer(self, block, num_residual_blocks, intermediate_channels, stride):identity_downsample = Nonelayers = []# Either if we half the input space for ex, 56x56 -> 28x28 (stride=2), or channels changes# we need to adapt the Identity (skip connection) so it will be able to be added# to the layer that's aheadif stride != 1 or self.in_channels != intermediate_channels * 4:identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels,intermediate_channels * 4,kernel_size=1,stride=stride,bias=False),nn.BatchNorm2d(intermediate_channels * 4),)layers.append(block(self.in_channels, intermediate_channels, identity_downsample, stride))# The expansion size is always 4 for ResNet 50,101,152self.in_channels = intermediate_channels * 4# For example for first resnet layer: 256 will be mapped to 64 as intermediate layer,# then finally back to 256. Hence no identity downsample is needed, since stride = 1,# and also same amount of channels.for i in range(num_residual_blocks - 1):layers.append(block(self.in_channels, intermediate_channels))
复制代码


返回 nn.Sequential(*layers)


然后定义不同版本的 ResNet


  • 对于 ResNet50,层序列为[3,4,6,3]。

  • 对于 ResNet101,层序列为[3,4,23,3]。

  • 对于 ResNet152,层序列为[3,8,36,3]。(请参阅“图像识别的深度残差学习”论文)


def ResNet50(img_channel=3, num_classes=1000):return ResNet(block, [3, 4, 6, 3], img_channel, num_classes)


```plaindef ResNet101(img_channel=3, num_classes=1000):return ResNet(block, [3, 4, 23, 3], img_channel, num_classes)def ResNet152(img_channel=3, num_classes=1000):return ResNet(block, [3, 8, 36, 3], img_channel, num_classes)
复制代码


然后编写一个小的测试来检查模型是否工作正常。


def test():net = ResNet101(img_channel=3, num_classes=1000)device = "cuda" if torch.cuda.is_available() else "cpu"y = net(torch.randn(4, 3, 224, 224)).to(device)print(y.size())
复制代码


test()
复制代码


对于上面的测试用例,输出应该是:



全部代码可以在这里访问:


https://github.com/BakingBrains/Deep_Learning_models_implementation_from-scratch_using_pytorch_/blob/main/ResNet_.py


[1]:Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition, Dec 2015, DOI:https://arxiv.org/abs/1512.03385


原文链接:


https://www.analyticsvidhya.com/blog/2021/06/build-resnet-from-scratch-with-python/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29

2021-06-09 10:032012
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 549.8 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

“区块链+农业”推动产业“提档升级”

CECBC

设计微博系统中"微博评论"的高性能高可用计算架构

Rabbit

架构实战课程 模块6作业

Frank

这些行业用ERP系统会有很大帮助

低代码小观

企业管理 ERP

新一代容器平台ACK Anywhere,来了

阿里巴巴云原生

阿里云 云原生 ACK Anywhere

【优化技术专题】「线程间的高性能消息框架」再次细节领略Disruptor的底层原理和优势分析

洛神灬殇

Disruptor 异步高性能 高并发处理 性能提升 10月月更

云资源是什么意思?有什么特点?

行云管家

云计算 云服务 多云服务 云资源

VNC服务安装配置与使用

耳东@Erdong

vnc 10月月更

Pandas教程:数据类型操作

Peter

Python pandas

在线2-36任意进制转换工具

入门小站

工具

KubeVela 1.1 发布,开启混合环境应用交付新里程碑

阿里巴巴云原生

阿里云 云原生 KubeVela

以太坊的黄金时代:模块化的区块链范式的开端

CECBC

linux之iftop命令

入门小站

Linux

【Vuex 源码学习】第九篇 - Vuex 响应式数据和缓存的实现

Brave

源码 vuex 10月月更

BPM软件是什么?BPM软件跟BPA有关联吗?

低代码小观

企业管理 业务流程管理 信息管理

爱奇艺数据质量监控的探索和实践

爱奇艺技术产品团队

监控 数据治理 pingback

【Flutter 专题】34 图解自定义 View 之 Canvas (二)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 10月月更

私有云部署系列之动态获取IP(程序执行)

稻草鸟人

Python

字节跳动是如何落地微前端的

字节跳动终端技术

字节跳动 大前端 Web应用开发

【LeetCode】无重复字符的最长子串Java题解

Albert

算法 LeetCode 10月月更

Pandas教程:数据处理基石-数据探索

Peter

Python pandas

架构实战课程 模块5作业

Frank

2021年10月4日Facebook史上最严重宕机复盘分析

郑州埃文科技

ip数据 网络波动 网动仪

私有分布式账本技术还是公共区块链?

CECBC

最长回文子串 -- 三种解答

秦怀杂货店

数据结构 算法 最长回文子串

[ Golang 中的 DDD 实践] 值对象

baiyutang

golang 设计模式 领域驱动设计 DDD 10月月更

100台机器上海量IP如何查找出现频率 Top 100?

秦怀杂货店

IP 海量数据 top

强化学习RL AWS 自动驾驶DeepRacer ROS 架构 易筋 ARTS 打卡 Week 71

John(易筋)

ARTS 打卡计划

Golang语言HTTP客户端实践

FunTester

golang 性能测试 HTTP 接口测试 FunTester

物理服务器是什么意思?怎么构成?与云服务器有啥区别?

行云管家

云计算 服务器 云服务器 物理服务器

企业运维监控管理系统我给推荐行云管家!

行云管家

云计算 运维 运维监控 云管平台

用Python从零开始构建ResNet_AI&大模型_SHAKHADRI313_InfoQ精选文章