写点什么

英特尔实现光子神经网络新突破,有效提升光子芯片效率

  • 2019-05-22
  • 本文字数:1403 字

    阅读完需:约 5 分钟

英特尔实现光子神经网络新突破,有效提升光子芯片效率

构成光线的光子表现得很聪明:在所有可能的曲线中,它们总是选择能够最快地达到目标的光子。

——马克斯·普朗克


光子集成电路或光学芯片比电子电路或芯片更具优势,包括降低功耗和延迟。这就是为什么研究人员认为光子设备可能会为人工智能工作带来巨大进步。


Max Welling 在 2018 年 ICML 大会上的主题演讲很好地描述了“每千瓦时智能”的概念,强调了人工智能高效计算的必要性;而在延迟这个话题上,人工智能从业者敏锐地意识到,在交通等对安全要求甚高的实时应用程序中,更快的反应时间将直接转化为更高的安全性。


两年前,麻省理工学院的 Shen Yichen 博士等人进行了一项开创性的研究,提出了一条既能降低延迟又能提高能源效率的途径:光神经网络(ONNs)。在上周的克莱奥会议上,英特尔及其合作者在加州大学伯克利分校提出有关 ONNs 的新发现,包括建议如何扩展原始工作面对现实制造约束,将纳米光子神经网络电路实际现实更近一步。


长期以来,光子一直对硬件设计师具有强大的吸引力,因为它们可以快速、轻松地穿过物质。硅可以作为一种光学介质,这意味着可以利用几十年的芯片制造技术来构建光的电路。这种被称为硅光子学的技术,在通信和计算领域开辟了巨大的可能性。


Shen Yichen 论文的一个关键贡献是实验证明了:光子电路的一个共同组成部分,称为马赫-曾德尔推断器(Mach-Zehnder inferometer,简称 MZI),可以配置成在与两束光的相位相关的量之间执行 2×2 矩阵乘法;此外,他们实现了将这些小矩阵乘法安排在一个三角形网格中,以创建更大的矩阵。最终的结果是一个实现矩阵-向量乘法的光子电路,这是深度学习中的核心计算。


任何制造过程中都存在缺陷,这意味着芯片内部和芯片之间会有小的变化,这些都会影响计算的准确性。为了使 ONNs 更接近生产,研究人员想了解它们对典型的过程变化有多敏感,特别是当它们扩展到更现实的问题大小时,是否可以通过考虑不同的电路结构使它们对这些变化更加健壮。


在最近发表的一篇论文中,英特尔的研究者们考虑了用 MZIs 构建光学神经网络引擎的两种架构:一种称之为 GridNet,该方法将 MZIs 排列在一个网格中;另一种方法被称之为 FFTNet,它将 MZIs 按照计算快速傅里叶变换的体系结构(但在案例中,权重是从数据中学习的,所以通常计算不会是实际的 FFT)建模,形成蝴蝶状的模式。


然后,研究人员在一个针对手写数字识别(MNIST)基准深度学习任务的软件仿真中对这两种体系结构进行了训练。结果发现:在双精度浮点精度的情况下,GridNet 的精度要高于 FFTNet (~98% vs ~95%),而 FFTNet 对制造的不精确性有更强的鲁棒性。同时,研究者们进一步发现,通过在每个 MZI 的移相量和透射率中添加噪声来模拟,将这些噪声水平设置为现实水平后,GridNet 的性能下降到 50%以下,而 FFTNet 的性能几乎保持不变。


如果 ONNs 要成为人工智能硬件生态系统中一个可行的部分,它们需要扩展到更大的电路和工业制造技术。英特尔的发现解决了这两个问题:更大的电路将需要更多的设备,因此,试图在芯片制造后对每个设备进行“微调”将是越来越大的挑战。


英特尔认为,一个更具可扩展性的策略是在软件中培训 ONNs,然后根据这些参数批量生产电路。实验结果表明,提前选择正确的架构可以极大地增加产生的电路即使在制造变化的情况下也能达到预期性能的可能性。


有科学家表示,英特尔的这项研究为人工智能软件训练技术奠定了基础,可以避免在制造后微调光学芯片的需要,从而节省宝贵的时间和人力。


2019-05-22 17:2115324
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 288.4 次阅读, 收获喜欢 1303 次。

关注

评论

发布
暂无评论
发现更多内容

面试系列-2 redis列表场景分析实践

李阿柯

php 面试 redis cluster

手把手教你在IDEA中配置Maven

打工人!

Java maven 6月日更

Tapdata 实时数据融合平台解决方案(三):数据中台的技术需求

tapdata

oracle mongodb

webRTC实现音视频通话与屏幕共享

侠客行

WebRTC 屏幕共享 iOS屏幕共享 web屏幕共享

5分钟速读之Rust权威指南(十五)

wzx

rust

🏆大势所趋,迈向认识WebRTC的第一步,加油!

码界西柚

WebRTC RTC RTC征文大赛 6月日更

《堂食点餐》APP前后端全部免费开源啦!

YonBuilder低代码开发平台

源码 大前端 APP开发 APICloud 外卖app

架构实战营模块5作业

eoeoeo

架构实战营

OpenKruise v0.9.0 版本发布:新增 Pod 重启、删除防护等重磅功能

阿里巴巴云原生

容器 运维 云原生 k8s

基于 BDD 理论的 Nebula 集成测试框架重构(上篇)

NebulaGraph

情指勤一体化指挥调度平台搭建,情报研判分析系统搭建

k8s 插件管理工具之krew使用

雪雷

6月日更

我对技术潮流的一点看法

Phoenix

持续测试 | 让测试更自由:在 CODING 中实践自动化执行用例

CODING DevOps

DevOps 自动化测试 持续测试

BZZ节点挖矿系统搭建,BZZ矿机分币系统

HarmonyOS 2正式发布 硬件生态品牌HarmonyOS Connect一同亮相

科技汇

【Vue2.x 源码学习】第二篇 - Vue的初始化流程

Brave

源码 vue2 6月日更

Spring Boot FatJar类加载机制简要分析

luojiahu

Spring Boot 类加载 ClassLoader FatJar

你们公司的数据库出过问题么?

escray

学习 极客时间 朱赟的技术管理课 6月日更

Qcon大会百度智能云出招,AI-Native云计算架服务企业融合创新

百度大脑

人工智能 云计算 Qcon

Tapdata 实时数据融合平台解决方案(五):落地

tapdata

大数据

🔎【Java 源码探索】深入浅出的分析HashMap(JDK7)

码界西柚

Java hashmap 6月日更 JDK7

​探讨AI+新模式,百度大脑提供纺织企业数字化转型新路径

百度大脑

AI 纺织企业

源码解读-别再说你不知道HashMap原理!面试真题解析

欢喜学安卓

android 程序员 面试 移动开发

6月2日,讲一个鸿蒙的故事

这不科技

华为 鸿蒙

分治(详解残缺棋盘 —— Java代码实现)

若尘

算法 分治 java代码 6月日更

你真的了解 “开源” 么?请查收【保姆级】开源百科

程序员鱼皮

Java c++ Python GitHub 开源

Tapdata 实时数据融合平台解决方案(四):技术选型

tapdata

大数据

智能炒币机器人系统开发案例解析,智能炒币机器人源码设计

系统开发咨询1357O98O718

渣本毕业两年经验,精心整理

欢喜学安卓

android 程序员 面试 移动开发

【Apache BookKeeper】 概念与架构

awen

Apache 分布式存储 bookKeeper

英特尔实现光子神经网络新突破,有效提升光子芯片效率_AI&大模型_陈思_InfoQ精选文章