导读: 本次分享的主题为自动驾驶硬件研发的挑战与展望。
主要内容包括:
Pony.ai 硬件发展简介
Pony.ai 硬件团队简介
Pony Alpha2 系统介绍
自动驾驶硬件研发挑战
1. Pony.ai 硬件发展简介
Pony.ai 成立于 16 年 12 月,公司第一辆车是在 2017 年 Q2,拿到了美国加州的自动驾驶测试牌照,开始正式测试。可以看到我们当时用的还是 64 线激光雷达。2018 年 Q1,拿到了北京测试牌照,可以看到我们的雷达已经换成了 32c+多 camera 组合。2018 年 Q4,我们在上海 WAIC 世界人工智能大会上发布了公司第一个硬件 release 版本 Pony Alpha,可以看到整车的集成度和外观都进行了非常有针对性的设计。2019 年 Q2,与丰田合作改装 LEXUS RX450h。最后,是在 2019 年 Q4 发布的 Pony Alpha2 硬件系统,稍后将详细介绍。
2. Pony.ai 硬件团队介绍
Pony.ai 在北京、硅谷、广州都有研发中心,并且有车队,所以相应的在三地都有硬件团队提供本地化支持。三地之间的硬件团队经常会做技术共享,由于硬件研发本身有一定的本地化属性,所以我们是通过项目来分工合作的,同时,我们每周三地的工程师会进行充分的技术交流。
Pony.ai 硬件团队构成,包括:电子电气工程师、结构工程师、嵌入式工程师/FPGA 、车辆工程等等。
3. Pony Alpha2 系统介绍
首先介绍下自动驾驶汽车硬件系统,如上图所示,主要分三个部分:
① sensor 传感器,相当于车辆的“眼睛”,包括:雷达,Camera,GPS+IMU 等。
② compute 计算单元,相当于车辆的“大脑”,主要放在后备箱。
③ vehicle 车辆本身,是最大的硬件系统,相当于车辆的“肌肉”。
这是我们在 2019 年 Q4 发布的 Pony Alpha2 硬件系统,最新的进展包括:
① 传感器配置升级:出于成本和国产化的考虑,主 lidar 使用了 Hesai64 线激光雷达。
② 传感器清洁系统:特别针对雨天,自主研发传感器清洁系统。
③ DBW 线控:过去一度被 Autonomous Stuff 垄断 目前 pony 已经具有不同车型的线控改装技术,并能够独立进行控制参数调优。
④ 线束:深入改装车辆系统,自主研发与定制的线束。
⑤ 集成度进一步提升:通过自研硬件设备,使得设备间连接线束减少,集成度和稳定性显著提高。
⑥ 后备箱空间可用:高度集成节省了空间,后备箱有大量富裕空间供 robotaxi 乘客使用放置行李。
4.自动驾驶硬件研发挑战
① 成本
硬件系统首先面临的 最大挑战 就是 成本 。我们看以看到右图是 pony alpha 系统的车顶,有 3 个激光雷达,6 个高清摄像头,还有定位模块等,传感器+定位系统成本高达几十万 RMB。所以,如果成本这么高,如何实现自动驾驶的批量生产?何时才能服务大众?
Pony 进行的尝试和探索:
自研硬件实现定制化与降成本:自研的好处就是可以把有用的模块留下,把没用的模块去掉,就可以直接降低成本。如:车顶传感器与导航信息处理单元,实现供电,信号分发,数据汇聚,数据预处理等功能。支持多种卫星导航与惯性导航单元,实现不同成本的定位性能组合。
通过几代的迭代,车顶传感器系统经历了从成品采购->模块级集成->芯片级集成的升级。
与行业一起发展:参考 Bosch radar 的发展路径。随着 radar 的蓬勃发展,由开始的机械扫描,变成电子扫描,集成度和稳定性在不断的提高,使 radar 的体积和成本都在不断的缩小和降低。
我们已经与丰田进行深入合作,包括还有广汽。通过与 OEM 合作,逐步向前装发展,借助主机厂的力量,获得更强的议价能力。
② 功耗/散热
功耗和散热问题,简单理解就是 电从哪里来?热到哪里去?
常见车载 ECU 的功耗在 10W 量级
现有无人车由于需要高性能计算(CPU+GPU),功耗通常>1000W
Pony 内部进行的尝试和探索:
供电方案的优化:pony 自主研发的供电系统,冗余供电,低压与高压结合,可以实现双路备份。
异构计算:刚刚说到,我们内部有 FPGA 团队,可以对成熟的算法进行加速,速度提升的同时,降低功耗。当然,业界也有专用芯片的方案可以考虑。
散热仿真与方案设计:我们的团队内部还有散热工程师,会针对我们系统的状态,构造各种环境,进行仿真验证、温箱测试、实车测量,保证系统的热量能够及时稳定的传输出去。
③ 快速迭代
右图是典型的汽车研发流程图,一辆汽车的研发大概会经历 2 年时间。但是对于我们,从 2017 年 Q2 到 2018 年 Q4,大概 1 年半的时间内,我们已经迭代了 3 代的硬件产品。并不是我们追求快,而是技术和行业的发展趋势如此:
技术变化快,供应链变化:如刚刚提到的激光雷达的变化,已经不是传统 64 线激光雷达的时代,激光雷达的线束越来越高,体积越来越小,我们必须要跟上变化。
行业变化快,合作模式探索:Pony 有和不同的 OEM(丰田,现代,广汽)以及出行公司开展合作。这要求我们必须具备快速应变,灵活调整的能力。
Pony 进行的尝试和探索:
全栈团队,自力更生:除了硬件研发团队,我们还有来自车厂试制部门的现场工程师,擅长跑车改装的机械技师,自己的试制车间等等,使我们具备基本的生产加工能力。
简化流程,大胆试错:研发初期追求速度,与车厂的研发流程相比,Pony 内部的设计评审流程相对简单。因为公司内部有众多优秀的人才,我们相信工程师自己的判断,当然,这个前提是基于我们的系统是在不断的快速更新迭代的。
前瞻设计,预留资源:比如预留空间,电量,安装点等。
④ 量产
目前全球汽车保有量在 10 亿以上,全球无人驾驶汽车总量无法找到数据,只能预估下,大概在万级别,所以差距还是非常大的。曾经有人统计无人驾驶带来的效率提升,粗略的估计是 95%,如果替代国内的 2 亿辆汽车,需要一千万无人驾驶车辆。所以现在离自动驾驶汽车量产还有很大的一段距离,右图来自网络,大概是前几年的照片,就很形象的解释了量产。虽然现在很多自动驾驶汽车已经过了 demo 的阶段,但是这个问题还是存在的。
Pony 进行的尝试和探索:
设计工艺的选择:以最典型的结构设计为例,最开始我们第一辆车,所有的结构件都是通过 CNC 做出来的,随着规模增大以后,就会去尝试鈑金、铸模等工艺。
传感器标定优化:以 Camera 标定为例,我们有一套全自动化的 Camera 内参标定平台,可以实现 Camera 从安装->标定过程->内参保存->处理->上传,都是全自动化的。
生产管理和质量管控:由于目前自动驾驶车辆还是几百上千的级别,主要还是采用人工进行整体的装配和调试。人工难免出错,所以我们内部会通过一些流程:如制度、文档、信息化系统,对生产管理和质量管控进行了大量的优化,来保证车辆的质量是过关的。
⑤ 复杂道路情况
最后,再介绍下复杂路况。右上角是国内典型的十字路口,目前大部分的自动驾驶公司应该还处理不了这种场景。对于 Pony,随着场景不断丰富,对无人车硬件的要求不断增多。比如传感器的配置,我们也经历了摸石头过河,循序渐进的过程。Waymo 为什么选择在凤凰城开展无人驾驶测试,相当程度上也是考虑到那里的空气干燥,常年晴天,极少雨雪。解决这些极端气候问题,需要更长期的技术迭代优化,短期内这些可能并不是最迫切的,我们也相信随着技术的发展这些难题也都会逐步得到解决。
今天的分享就到这里,谢谢大家。
作者介绍:
李林涛,Pony.ai 北京硬件研发团队负责人
本文来自 DataFunTalk
原文链接:
评论