写点什么

基于机器学习的自动化网络流量分析

  • 2022-04-13
  • 本文字数:2411 字

    阅读完需:约 8 分钟

基于机器学习的自动化网络流量分析

一、概述


目前机器学习广泛应用于网络流量分析任务,特征提取、模型选择、参数调优等众多因素决定着模型的性能,每当面对不同的网络流量或新的任务,就需要研究人员重新开发模型,这个反复性的过程往往是费时费力的。因此有必要为不同网络流量创建一个通用的表示,可以用于各种不同的模型,跨越广泛的问题类,并将整个建模过程自动化。本文关注通用的自动化网络流量分析问题,致力于使研究人员将更多的精力用于优化模型和特征上,并有更多的时间在实践中解释和部署最佳模型。

二、自动化网络流量分析


传统基于机器学习的网络流量分析严重依赖人工,在实践中,获得特征、模型和参数的最优组合通常是一个迭代的过程,这个过程有一些弊端。首先,数据的合适表示和特征选择对于流量分析任务是十分重要的,但即便有专业领域知识,特征工程仍然是一个脆弱且不完善的过程,人工分析时可能会忽略不够明显的或包含复杂关系的特征;其次,网络环境复杂多变,流量模式的变化带来特征的失效;最后,对于每一个新的流量检测或分类任务,都需要重新设计新的特征,选择合适的模型,并重新调整参数。


为了避免这些问题,本节介绍一种适用于不同网络流量分析任务的自动化的方法[1],通过对网络流量进行统一表示,并结合自动机器学习(AutoML)方法,实现在不同网络流量分析问题上的简单快速的自动化迭代和部署。

2.1 数据表示


对于许多分类问题,数据表示与模型选择同等重要,所以在应用机器学习方法时,如何对数据进行表示和编码是非常重要的。对于网络流量数据的编码需要满足以下三个要求:


(1)完整的表示。我们的目标不是选择特定的特征,而是一种统一的数据编码,以避免依赖专家知识,所以需要保留包含包头在内的所有数据包信息;


(2)固定的大小。许多机器学习模型的输入总是保持相同的大小,所以每个数据包表示都必须是常量大小;


(3)固有的规范化。当特征被归一化后,机器学习模型通常会表现得更好,也能减少训练时间并增加模型的稳定性,所以如果数据的初始表示本身就是规范化的,将会非常方便;


(4)一致的表示。数据表示的每个位置都应该对应于所有数据包包头的相同部分,也就是说,即使协议和报文长度不同,特定的特征总是在数据包中具有相同的偏移量,对齐后的数据都能让模型基于这样的前提来学习特征表示。


如图 1 所示,网络流量表示的主要方式包括语义表示法和朴素二进制表示法。


(1)语义表示法:每个报头都有各自的语义字段,但它不保留具有区分度的可选字段的顺序,同时需要领域专业知识来解析每个协议的语义结构,即使拥有这些知识,后续也还是不可避免进行繁琐的特征工程;


(2)朴素二进制表示法:使用数据包的原始位图表示来保持顺序,但是忽略了不同的大小和协议,导致两个数据包的特征向量对同一特征具有不同的含义,这种不对齐可能会在重要特征的地方引入噪声而降低模型性能,同时也因为无法将每一位都映射到语义上而导致不可解释。


图 1 语义表示法和朴素二进制表示法


以上两种表示方法都无法满足统一化表示数据的需求,如图 2 所示,研究人员结合语义表示法和朴素二进制表示法提出一种统一的网络数据包表示方法 nPrint。首先,它会保证任何数据包都可以被完整表示而不丢失任何信息;然后,使用内部填充确保每个数据包以相同数量的特征表示,并且每个特征具有相同含义,这种在位级上可解释的表示使我们能够更好的理解模型;其次,直接使用数据包的位,区分于某个位被设置为 0,将不存在的包头用-1 填充;最后,每个数据包都用相同数量的特征表示,对于给定的网络流量分析任务,将载荷设置为可选的字节数。此外,nPrint 具有模块化和可扩展的特性,不仅可以将其他协议添加到表示中,也可以将一组数据包表示串联起来构建多包的 nPrint 指纹。


图 2 nPrint

2.2 nPrintML


专家往往花费数周甚至数年从原始数据包中提取特征,并在认为最好的一个或一组模型上进行训练,最后通过手工或结构化搜索对模型进行调优。为了将整个过程标准化,在 nPrint 的基础上结合 AutoML 工具,提出 nPrintML,如图 3 所示,实现了机器学习流程的自动化。


图 3 nPrintML


nPrint 使不同流量分析工作的特征提取过程标准化,AutoML 旨在自动化特征选择、模型选择和超参数调优,以便为给定的特征和带标签数据集找到最优模型。最终,nPrint 为每个网络流量分析任务提取最佳特征,AutoML 用于确定最佳模型和超参数。


因为 AutoGluon 集成了多个性能良好的单一模型,优于许多其他 AutoML 工具,所以选择 AutoGluon 作为 AutoML 工具。这里使用处理表格数据的功能子集 AutoGluon-Tabular,它通过搜索一组基模型来进行特征选择、模型选择和超参数优化,包括深度神经网络、基于树的方法(如随机森林)、非参数方法(如 k 近邻)以及梯度增强树方法。此外,AutoGluon-Tabular 也能从基模型中创建加权集成模型,以更少的训练时间实现比其他 AutoML 工具更高的性能。


研究人员结合 nPrint 与 AutoGluon,用 python 实现了 nPrintML[2],允许用户在单个调用中在整个目录上运行。以被动操作系统检测为例,用例如下:


nprintml -L os_labels.txt -a index -P traffic.pcap -4 –t

2.3 实验结果

针对 8 个网络流量分析场景,图 4 展示了用 nPrintML 进行分析的案例研究,实验结果表明,nPrintML 不仅可以解决不同场景的网络流量分析问题,并且具有相较于传统方法更好的性能。


图 4 nPrintML 案例研究结果

三、小结


将机器学习应用于网络流量分析任务的性能,除了取决于模型本身之外,数据的适当表示和特征的选择同样重要。本文介绍了一种自动网络流量分析的新思路,通过将数据包进行统一表示,并将其转化为适合表示学习和模型训练的格式,然后结合现有的自动机器学习,最终将整个网络流量分析过程完全自动化。这种方法不仅适用于常见的网络流量分析任务,而且表现出比现有模型更好的性能。

参考文献


[1] Holland J , Schmitt P , Feamster N , et al. New Directions in Automated Traffic Analysis. 2021 ACM Computer and Communications Security Conference [C]. 2021.

[2] https://nprint.github.io/

2022-04-13 09:173225

评论

发布
暂无评论
发现更多内容

OpenAI竞争对手Anthropic融资:1融资易估值难2背后谷歌云3侧重安全

B Impact

22年阿里高频Java面试题总结:分布式+中间件+高并发+算法+数据库

Java java面试 Java八股文 Java面试题 Java面试八股文

高效基于scrum的项目管理工具分享

顿顿顿

Scrum 敏捷开发 项目管理工具 项目管理软件、 leangoo

数据库国产替代涌入千军万马 亚信科技CEO高念书:非头部企业将难以生存

亚信AntDB数据库

数据库 AntDB 国产数据库 AntDB数据库

CleanMyMac X4.20免费版Mac系统垃圾清理工具

茶色酒

CleanMyMac X

工厂模式进阶用法,如何动态选择对象?

JAVA旭阳

Java 设计模式

数字图像处理Matlab函数全汇总

timerring

图像处理

浦发银行与易观千帆签约合作

易观分析

金融 银行 经济

金融交易行为监测方法——利用 CNN 模型实现行为识别

亚马逊云科技 (Amazon Web Services)

Swift 里 的 Struct 和 Class

刿刀

前端开发框架React技术如何与小程序结合,进行页面构建

兴科Sinco

小程序 taro 前端开发 前端框架 React Native

openEuler加入RISC-V Landscape

openEuler

Linux 操作系统 openEuler risc-v

两会聚焦|智能制造的“加速时刻”来了

硬科技星球

58个实例+2个项目,带你深入技术原理,彻底搞懂Spring Boot

Java spring 微服务 Spring Boot 框架

模块八作业

张贺

架构训练营

API 网关日志的价值,你了解多少?

API7.ai 技术团队

【3.3-3.10】写作社区优秀技术博文一览

InfoQ写作社区官方

热门活动 优质创作周报

直播回顾|聚焦科技自立自强,Bonree ONE 助力国产办公自动化平稳替代

博睿数据

可观测性 智能运维 博睿数据 信创生态 直播回顾

微服务为什么要用到 API 网关?

API7.ai 技术团队

从 1 秒到 10 毫秒!在 APISIX 中减少 Prometheus 请求阻塞

API7.ai 技术团队

【深度挖掘RocketMQ底层源码】「底层问题分析系列」深度挖掘RocketMQ底层那些导致消息丢失的汇总盘点透析([REJECTREQUEST]system busy, start flow control for a while)

码界西柚

RocketMQ OOM 消息队列 3月日更

周六直播|StarRocks 参与数据湖架构峰会,揭秘最新湖仓分析新范式!

StarRocks

数据库 大数据

实践,制作一个高扩展、可视化低代码前端,详实、完整

悠闲的水

前端 低代码 前端框架 低代码开发 低代码平台

原因码与ACK--MQTT 5.0新特性

EMQ映云科技

物联网 IoT mqtt 企业号 3 月 PK 榜 原因码

链上双币拆分理财dapp系统开发功能逻辑分析(智能合约编写)

开发v-hkkf5566

适配PyTorch FX,OneFlow让量化感知训练更简单

OneFlow

人工智能 深度学习

ListView Item多布局的实现

芯动大师

ListView item QQ界面

PyTorch深度学习实战 | 计算机视觉

TiAmo

深度学习 计算机视觉

技术创新,让企业拥有智能“伯乐”,实现精准识人

用友BIP

电商平台的商品价格管理的产品设计

产品海豚湾

产品设计 SaaS 商品管理 电商 产品分析

研发提效利器:聊聊mock服务化

老张

Mockito 服务化 Mock

基于机器学习的自动化网络流量分析_语言 & 开发_王萌 绿盟科技天枢实验室_InfoQ精选文章