写点什么

ECCV2024 | 京东零售广告创意:基于人类反馈的可信赖图像生成

  • 2024-12-05
    北京
  • 本文字数:2591 字

    阅读完需:约 9 分钟

大小:1.30M时长:07:33
ECCV2024 | 京东零售广告创意:基于人类反馈的可信赖图像生成



ECCV2024: Towards Reliable Advertising Image Generation Using Human Feedback

链接:https://arxiv.org/abs/2408.00418



摘要:在电商领域,吸引顾客注意力的广告图片至关重要。尽管生成模型可以自动生成图像,但它们往往会产生不符合广告标准的图片,可能误导顾客,并需要大量人工成本进行检查。本文探讨了如何提高可用生成图像的比例。我们首先引入了一种多模态可信赖反馈网络(RFNet),用于自动检查生成的图像。将 RFNet 整合到一个循环过程——循环生成中,可以提高可用广告图像的数量。为了进一步提升生产效率,我们通过一种创新的一致性条件正则化方法,利用 RFNet 的反馈来微调扩散模型(RFFT)。这显著提高了生成图像的可用率,减少了循环生成中的尝试次数,并提供了一种高效的生产过程,同时不牺牲视觉效果。我们还构建了一个包含超过一百万张由人工标注的生成广告图像的可信赖反馈一百万(RF1M)数据集,这有助于训练 RFNet 准确评估生成图像的可用性,并真实反映人工反馈。总的来说,我们的方法为广告图像生成提供了一个可信赖的解决方案。



一、背景及现状

吸引人的广告图片对于电子商务的成功至关重要。由于手动设计图片需要大量的人工成本,因此对自动广告图像生成的需求正在上升。最近,通过结合先进的扩散模型(Stable Diffusion)和 ControlNet,可以为产品生成和谐的背景,同时保持商品细节不变。

尽管生成模型有潜力创造出吸引人的背景,但我们观察到其经常会生成质量欠佳的广告图片,如下图所示,这些图片存在空间和尺寸不匹配、不显著以及形状幻觉等问题。





这些有缺陷的图片可能导致顾客对产品产生误解,进而带来不佳的购物体验,因此需要大量人工来检查生成的图像。这些缺陷限制了生成模型在广告图像生产中的广泛应用。因此,我们要解决的问题是如何建立一个可信赖的广告图像生成流程,以高可用率生成图像。



二、信赖反馈模型

一个自然的解决方案是利用生成过程中的随机性,反复生成图像直到获得可用的图像(循环生成)。为了替代人工检查,我们提出了一种新颖的信赖反馈网络(RFNet),充当人工检查员来评估生成的广告图像的可用性。由于仅依赖单一生成的图像,模型无法有效获得进行精确检查所需的关键知识,例如产品是什么以及产品如何出现在背景中。因此,RFNet 整合了多种辅助模态,以提供对判断不同不可用情况至关重要的信息。RFNet 的结构如下所示:





通过使用 RFNet 判别生成结果,可利用随机性提升可用率。我们将这种提升可用率的方法称之为循环生成,伪代码如下所示:





三、可信赖人类反馈

虽然循环生成大大增加了可用图像的数量,但因为生成模型本身能力有限,多次尝试会显著延长生成过程。利用人类反馈(RLHF)来增强扩散模型的能力提供了一种可行的选择,这些方法在提高生成图像的视觉质量方面已经取得显著结果。类似的,在训练完信赖反馈模型后,我们将其输出看作人类对于生成图片的评价,通过将其结果反传回生成模型来提升生成图片中可用的比例。该流程如下所示:







其中,yd 为一个 one-hot 向量,其中合格类别的概率为 1,而其他类别的概率为 0。oi 为生成图像输入给信赖反馈模型后得到的概率,N 为一次训练中样本的总数。所得到的梯度被反传至生成模型中,来使其朝着更高概率生成合格图像的方向优化。沿用 ControlNet 原有的设定,只有 ControlNet 部分参与梯度更新,而 Stable Diffusion 部分是不更新参数的。



尽管通过梯度反传微调能够提升合格样本出现的概率,然而由于图像可用率和美观度是对抗的目标,这使得提升图片的可用率会导致美观度的下降。例如,直接将商品放置于空白背景中将获得极低的 bad case 比例,然而这种方式将严重破坏图片的美感。如下图(a)所示,随着模型达到极高的图片可用率,商品的背景区域将产生美学崩塌的结果。





为了实现提升图片的可用比例并保持图片的美观,简单的方式是训练中加入 KL 损失约束,该损失可以保证模型的分布不偏离目标分布。利用该约束,可以使得模型在微调后的输出分布和微调前近似,从而达到不影响美观的结果。该过程可写作:





KL 损失约束的目的是为了保持图像不变,而 F_AC 是希望图像朝着可用率更高的方向改变,这样的对抗的目标难以产生双赢的结局。为了解决该问题,我们将重点从保持图像本身不变,迁移至输入文本条件的指导不变。由于在文生图模型中,文本内容和图像内容是高度相关的,因此我们提出了一种条件一致约束来保证文本条件不变。根据 classifier-free 的训练方法,可以推导出文本条件对图像生成过程的影响方向为:





为了保证图像可用率的梯度方向不影响文本条件的影响方向,我们提出了条件约束损失 L_CC 如下:





上图(b)显示了 L_CC 相对于 L_KL 的优势,其中 L_KL 希望逆转 F_AC 的梯度方向,而 L_CC 提供了一个双赢的策略,它保持了文本条件的梯度,同时允许模型朝着可用率更高的方向更新梯度。因此,最终微调生成模型的损失可以写作:





四、实验结果

(1)广告图像审核性能

如表 1 显示,RFNet 在所有指标上表现更优,突出了整合多模态信息和其有效结构的优势。我们进一步评估 RFNet 中各个组件的影响,结果如表 2 所示。实验表明,RFNet 中每个组件对最终 AP 有显著影响。





(2)广告图像可信赖性能

如表 3 所示,我们的 RFFT 相较其他方法获得了更高的可用率。“Ava”和“Human Ava”的相同趋势进一步证明了 RFNet 能够忠实反映人类反馈。如图 6 所示,循环生成(RG)通过多次尝试可以大幅提高可用图像的比例。由于我们模型拥有更强的生成能力,它需要更短的生产时间,这证明我们的方法提供了可靠且高效的解决方案。





如下图所示,我们对不同方法的美学质量进行了评估,所提出的方法在美学质量上可以与原始模型相媲美,这受益于所提出的条件一致约束。





(3)定性对比

下图展示了部分例子来说明我们的方法在提高可用率和生产效率方面的增强能力,同时保持视觉表现的稳定性。





(4)泛化性

为了评估我们方法的灵活性,我们考察了微调后的 ControlNet 在与各种 LoRA 和扩散模型权重整合时的通用能力。如表 4 所示,经过微调的 ControlNet 显著提高了不同 LoRA 和扩散模型权重的可用率。





Note:

欢迎大家交流与探讨,如有任何问题或建议,请随时联系:fengwei25@jd.com。

京东广告创意部门诚邀 AIGC/大模型领域人才加入,共同推动技术的进步和创新。欢迎大家踊跃投递简历,期待与您在京东相遇!


2024-12-05 11:307105

评论

发布
暂无评论
发现更多内容

数据库为何又如何走向分布式?

多颗糖

MySQL 数据库 分布式 raft TiDB

移动端短语音消息音频格式选择

轻口味

android 音视频 9月日更

Java中高级面试必知必会,高级Java开发面试解答之线程篇,

Java 程序员 后端

一行Java代码实现游戏中交换装备

华为云开发者联盟

Java 线程 游戏 Exchanger JDK 1.5

Python中如何优雅的使用assert断言

王坤祥

Python assert

update 没有索引导致业务崩了,老板骂了一个小时

华为云开发者联盟

数据库 innodb 事务 索引 update 语句

Java中级开发笔试题及答案,成功入职腾讯月薪45K,

Java 程序员 后端

大一 PingCAP、大二 JetBrains,专访 00 后开发者:千里冰封

郭旭东

开发者 采访 大学生

一个通用即时通讯(IM)系统的设计

OpenIM

FunTester抄代码之路

FunTester

Jmeter 测试框架 HttpClient FunTester ngrinder

5个非常重要的数据Oceanbase,TiDB,Cassandra,RocksDB,MemDB

hanaper

Java中级开发面试题,只需一篇文章吃透Java多线程技术,

Java 程序员 后端

源码解读Dubbo分层设计思想

vivo互联网技术

Apache dubbo 服务器 spi

云随想二:云时代,你如何采购软件?

FLASH

云原生 采购软件

阿里云内部 WebRTC 研究分享| 内容合集

阿里云CloudImagine

阿里云 音视频 WebRTC 视频云 技术专题合集

华为云首席产品官方国伟:没有人拥有看到未来的水晶球,云上突围之路如何走?

华为云开发者联盟

云计算 云原生 数字化转型 华为云 伙伴云

新思科技:部署数据安全战略,加强安全管理和隐私保护

InfoQ_434670063458

数据安全 新思科技

IOS技术分享| any自习室场景实现

anyRTC开发者

音视频 在线教育 移动开发 ios技术分享

计算机操作系统学习笔记 | 进程

Regan Yue

操作系统 进程 9月日更

java中间件、数据库与spring框架,Java性能优化最佳实践,

Java 程序员 后端

Java中高级岗面试为何越来越难,都2021年了,还不会Redis?

Java 程序员 后端

视频剪辑软件对比之:会声会影与剪映

懒得勤快

ECIC演讲精华|如何构建云原生应用下的高性能持久化存储?

焱融科技

技术 分布式 云原生 高性能 存储技术

SaaS 102 | 做 SaaS 产品应该如何做决策?

Teddy Chan

创业 数据 SaaS 决策 电商SaaS

教你实现一个朴实的Canvas时钟效果

华为云开发者联盟

标签 函数 canvas 时钟

小白也能看懂的dubbo3应用级服务发现详解

捉虫大师

dubbo 服务发现 Dubbo3

Compose 中的图形

Changing Lin

9月日更

Java中级笔试题百度文库,基础+进阶+高级,

Java 程序员 后端

Java中高级岗面试为何越来越难,学习Java开发的步骤,

Java 程序员 后端

李沐亚马逊资深首席科学家 - 动手学深度学习 易筋 ARTS 打卡 Week 64

John(易筋)

ARTS 打卡计划

火爆全网的Spring Security手册及源码笔记,在Github上标星103K

编程 架构 面试 程序人生 金九银十

ECCV2024 | 京东零售广告创意:基于人类反馈的可信赖图像生成_AI&大模型_京东零售技术_InfoQ精选文章