写点什么

面壁智能低调开源大模型“理科状元”!LeetCode 周赛超越 80% 人类选手,推理性能超 Llama3-70B

  • 2024-05-06
    北京
  • 本文字数:2153 字

    阅读完需:约 7 分钟

大小:1.08M时长:06:16
面壁智能低调开源大模型“理科状元”!LeetCode 周赛超越80%人类选手,推理性能超 Llama3-70B

在 4 月 18 日 Llama3 发布前两天,面壁智能低调开源了大模型 Eurux-8x22B。据悉,该模型在代码和数学等体现大模型核心素质的复杂推理综合性能方面超越 Llama3-70B,刷新开源大模型 SOTA,堪称“理科状元”。

 

除了开源时间早于 LlaMa3,Eurux-8x22B 的激活参数仅有 39B,推理速度更快,目前支持 64k 上下文,相比之下 Llama3-70B 的上下文大小为 8K。

 


此外,Eurux-8x22B 由 Mistral-8x22B 对齐而来,综合性能不输 Llama3-70B。



Eurux-8x22B 模型和对齐数据,全家桶开源:

 

https://github.com/OpenBMB/Eurus

https://huggingface.co/openbmb/Eurux-8x22b-nca

 

LeetCode 周赛超越 80%的人类选手

 

复杂推理能力是体现大模型性能差异的最核心能力之一,也是大模型真正落地应用所需的关键能力所在。根据测评,Eurux-8x22B 在代码和数学等复杂推理的综合性能方面刷新开源大模型 SOTA。

 


具体而言,Eurux-8x22B 在 LeetCode (180 道 LeetCode 编程真题)和 TheoremQA(美国大学水准的 STEM 题目)这两个具有挑战性的基准测试中,超过现有开源模型。

 

那么开源大模型“理科状元”Eurux-8x22B 在实际应用中表现如何呢?

 

代码能力方面,面壁智能让其参加了近期的一场 LeetCode 周赛,这是一个检验人类程序员编程能力的真实竞技场。

 

结果显示,Eurux-8x22B 的 Python 编程能力非常优秀,成功解决了四道算法题中的三道,其综合排名超越了 80%的人类参赛选手,可以初步通过互联网大厂的程序员编程面试。下面是周赛中 Eurux-8x22B 对一道中等难度算法题的真实解答:




除了代码能力优秀,Eurux-8x22B 解答数学题也是轻而易举。

 

例如,给它一道高中排列组合题,Eurux-8x22B 首先给出了清晰的解题思路,然后一步步地拆解执行,再进行结果汇总,最后得到了正确答案。

 


再考察它一道代数题,Eurux-8x22B 直击要害,运用二项式定理,清晰简洁地给出了正确解答。



接着给它一道向量代数题,Eurux-8x22B 也能轻松拿下:



高考函数题可能是令很多人回忆起来就头疼的一类题,Eurux-8x22B 也能解答无误:



(注:Eurux-8x22B 没有针对中文语料进行额外的微调和对齐。)

 

大模型“上分神器”

 

面壁智能是国内极少数兼具大模型算法与 infra 能力的团队:匹配大模型作为系统工程的本质要求,打造了一条从数据原材料、到模型制作过程中训练与调校工艺环环相扣的全流程高效模型生产线,被戏称为“大模型界最强 Buff 厂”。

 

本次 Eurux-8x22B 更快、更长、理科更好的全方位惊艳成绩,即来自面壁 Ultra 对齐技术(Ultra Series)更新:新增了大规模、高质量对齐数据集 UltraInteract。

 

UltraInteract 是专门设计用于提升大模型推理能力的大规模、高质量的对齐数据集,包含了覆盖数学、代码和逻辑推理问题的 12 个开源数据集的 86K 条指令和 220K 偏好对,共有五十万(条)左右数据。而相比之下,LLaMA 3-70B 模型则是使用了千万量级的对齐数据,这从侧面证明了 UltraInteract 数据集的优质性——数据质量胜过数据数量。

 

面壁智能团队是如何构建高质量的对齐数据?

 

  • 严格质量控制和筛选。首先,面壁从多个开源数据集中抽样出难度较高、考察多样推理能力的 86k 复杂推理问题,并使用多个模型来采样答案。通过自动化格式检查和人工质量抽查结合的方式保证了答案格式的一致性和内容的正确性。

 

  • 逐步推理。对于每条指令,模型都会按照思维链(CoT)格式进行逐步推理(如下图①),生成格式统一但模式多样的推理过程。

 

  • 多轮交互。在模型给出推理过程之后,会自动与答案对比确定推理过程是否正确(如下图②),如果不正确,UltraInteract 会使用另一个批评模型(如下图③)指出错误并给出改进建议,生成新的逐步推理(如下图④),再与策略模型进行多轮交互(如下图⑤⑥),直到答案正确或达到轮数上限为止。这一步有助于模型学会反思和改错能力,在实际表现中让其可以更好地和人进行多轮交互问答。

 


图注:UltraInteract 两轮交互的过程

 

  • 首创偏好树结构。为了深入探究偏好学习在复杂推理中的作用,UltraInteract 还为每个问题都构建了一棵偏好树(如下图所示),其中问题作为根节点,每个回复作为一个子节点,每一轮生成两个节点(一对一错相配对)。所有正确推理对应的节点都可以用于 SFT,而配对的节点则可以用于偏好学习。

 


图注:UltraInteract(第三列)是当前唯一一个树状结构的对齐数据集

 

除了 UltraInteract 数据集的大力加持,偏好对齐也对 Eurux-8x22B 的推理性能提升有所帮助。

 

面壁智能团队发现,在推理任务中,提升正确答案的奖励值对于偏好对齐的效果十分重要,因为正确答案的空间比错误答案更有限,因此更加重要,模型在训练过程中不能偏离正确答案。然而,当前流行的 DPO 算法会使正确答案和错误答案的奖励值共同降低,因此在实验中效果不佳。面壁智能采用了另外两种偏好对齐算法 KTO 和 NCA,取得了更好的效果,能在 SFT 的基础上进一步提升模型性能。

 

此外,UltraInteract 数据集也在开源社区受到了广泛好评:

 



据悉,面壁 Ultra 对齐技术此前已经“强壮”了全球超 200 个大模型,尤其擅长提升大模型“以小博大”能力。例如,在面壁 Ultra 数据集的加持下,Zephyr-7B 以更小规模,在不少指标上超越了 LLaMA2-70B-Chat,同时帮助“小钢炮”MiniCPM-2B 取得与 Mistral-7B 一较高下的惊艳表现。

 

面壁智能表示,未来将持续开源高效大模型及其数据集,开源开放的精神最终将惠及所有人。

 

2024-05-06 14:195183

评论

发布
暂无评论
发现更多内容

Redis集群架构剖析(2):槽位

非晓为骁

redis集群 slots 分布式,

又一重量级国赛来啦,保研可加分 | 中国软件杯飞桨遥感赛道正式启动

百度大脑

06 - vulhub - Apache HTTPD 多后缀解析漏洞,2021年Python大厂面试分享

程序媛可鸥

Python 程序员 面试

k8s组件的梳理(1),Python篇

程序媛可鸥

Python 程序员 面试

golang里的一些奇奇怪怪的东西

不登山的小鲁

golang Go 语言

CorelDRAW2022下载及新增功能讲解

茶色酒

cdr2022

"三高"Mysql - Mysql的基础结构了解

懒时小窝

MySQL 数据库

实用机器学习笔记二十九:NLP 中的微调

打工人!

机器学习 学习笔记 nlp 机器学习算法 3月月更

17个新手常见错误,送给初学Python的你!,憋个大招

程序媛可鸥

Python 程序员 面试

28,2021最新Python面试笔试题目分享

程序媛可鸥

Python 程序员 面试

Java 中的静态字段和静态方法

踏雪痕

Java 3月程序媛福利 3月月更

软件入门之《编程指南》-学习路径和经验随谈

hongfei

个人成长 编程好习惯 经验总结

开学季 | 飞桨AI Studio课程学习,小白也可以成为一名优秀的算法工程师

百度大脑

Girlfriend含苞待笑——一次性处理上百份文档,Python开发实战讲解

程序媛可鸥

Python 程序员 面试

架构实战营模块九-毕业设计-电商秒杀系统

Jude

架构实战营

Axios 教程:Vue + Axios 安装及实战 - 手把手教你搭建加密币实时价格看板

蒋川

Vue Node axios

36,Python基础开发与实践

程序媛可鸥

Python 程序员 面试

4万字【Python高级编程】保姆式教学,330页PDF10万字的知识点总结

程序媛可鸥

Python 程序员 面试

Top Trending Libraries of 2021,PaddleOCR再开源8大前沿顶会论文模型!

百度大脑

架构实战营 毕业设计项目

樰巳-堕~Horry

架构实战营 「架构实战营」

10个Python set 常用操作函数!,oppoPython面试题

程序媛可鸥

Python 程序员 面试

Apple任意代码执行漏洞,为了跳槽强刷1000道Python真题

程序媛可鸥

Python 程序员 面试

人工智能1秒检测一辆车,TA助力广本新车质量排名第一

百度大脑

#yyds内容盘点# 一文带你搞懂Python中变量与常量,Python开发框架

程序媛可鸥

Python 程序员 面试

2022美赛单变量深度学习LSTM 时间序列分析预测,作为Python开发者

程序媛可鸥

Python 程序员 面试

30余种加密编码类型的密文特征分析,差点挂在第四面

程序媛可鸥

Python 程序员 面试

90后,要有多少存款才正常?答案太扎心了,阿里P8大佬整理

程序媛可鸥

Python 程序员 面试

CSDN终于破2万粉了,几百块钱的课程可白嫖,就是宠粉,Python笔试面试题

程序媛可鸥

Python 程序员 面试

《软件开发的201个原则》思考:3.开发效率和质量密不可分

非晓为骁

程序员 个人成长 软件工程 软件开发原则 开发质量

重新开始学习测试驱动开发

escray

学习笔记 测试驱动开发

k8s组件的梳理,Glide的缓存机制

程序媛可鸥

Python 程序员 面试

面壁智能低调开源大模型“理科状元”!LeetCode 周赛超越80%人类选手,推理性能超 Llama3-70B_AI&大模型_褚杏娟_InfoQ精选文章