写点什么

快速构建基于 AWS Glue 的抽取跨区域 MySQL 8 的数据管道

  • 2020-03-04
  • 本文字数:9941 字

    阅读完需:约 33 分钟

快速构建基于 AWS Glue 的抽取跨区域 MySQL 8 的数据管道

在这个互联网高速发展,信息爆炸的时代,数据对于业务决策是至关重要的一环。随着数据类型的日益复杂,除了传统的交易数据,各种日志信息,行为数据也蕴含丰富的信息。如何简单高效的构建一个复杂的数据处理流程至关重要。


AWS Glue 是一种完全托管的数据目录和 ETL 工具,如果您是首次使用 AWS Glue 详细演示和概念讲解可参照此博客。当前 AWS Glue 原生的 JDBC 连接库不支持 MySQL 8,本文展示如何利用自定义的 JDBC 库连接外部数据源。本文以 MySQL 8 举例,但任何支持 JDBC 连接的数据源都适用于此方法。由于目前国内宁夏区域的成本更经济,所以生产系统的数据库在北京,但数据处理系统在宁夏的情况并不少见。


本文演示在宁夏区使用 AWS Glue 服务把位于北京区域私有子网中的 RDS (Mysql 8)的数据定时抽取到位于宁夏的 S3 中,并做处理。本文假定您已经有配置 AWS VPC,子网,安全组,角色的经验,如不清楚概念和如何配置请参照AWS官网

第一步:准备 MySQL 8 数据源

若已经有现成的数据源及数据可略过此部分。


注意:RDS 数据库不能开公有访问(Public accessibility 选择 No),模拟私有子网中的 RDS。


在 AWS RDS 中创建一个 RDS 数据库,如果不知道如何创建 AWS RDS 数据库请参照此文,数据库引擎版本选择 8.0.11 或以上。记住选择的 VPC 和安全组,下一步配置 Glue 的时候需要用到。


本次测试数据是由TPC-DS生成的,建表 DDL 如下:


SQL


CREATE TABLE `catalog_sales`(  `cs_sold_date_sk` bigint,   `cs_sold_time_sk` bigint,   `cs_ship_date_sk` bigint,   `cs_bill_customer_sk` bigint,   `cs_bill_cdemo_sk` bigint,   `cs_bill_hdemo_sk` bigint,   `cs_bill_addr_sk` bigint,   `cs_ship_customer_sk` bigint,   `cs_ship_cdemo_sk` bigint,   `cs_ship_hdemo_sk` bigint,   `cs_ship_addr_sk` bigint,   `cs_call_center_sk` bigint,   `cs_catalog_page_sk` bigint,   `cs_ship_mode_sk` bigint,   `cs_warehouse_sk` bigint,   `cs_item_sk` bigint,   `cs_promo_sk` bigint,   `cs_order_number` bigint,   `cs_quantity` bigint,   `cs_wholesale_cost` double,   `cs_list_price` double,   `cs_sales_price` double,   `cs_ext_discount_amt` double,   `cs_ext_sales_price` double,   `cs_ext_wholesale_cost` double,   `cs_ext_list_price` double,   `cs_ext_tax double` double,   `cs_coupon_amt` double,   `cs_ext_ship_cost` double,   `cs_net_paid` double,   `cs_net_paid_inc_tax` double,   `cs_net_paid_inc_ship` double,   `cs_net_paid_inc_ship_tax` double,   `cs_net_profit double` double,  PRIMARY KEY ( `cs_item_sk`,`cs_order_number` ));
复制代码


SQL


CREATE TABLE `warehouse`(  `w_warehouse_sk` bigint,   `w_warehouse_id` VARCHAR(100) ,   `w_warehouse_name` VARCHAR(100) ,   `w_warehouse_sq_ft` bigint,   `w_street_number` bigint,   `w_street_name` VARCHAR(255) ,   `w_street_type` VARCHAR(255) ,   `w_suite_number` VARCHAR(255) ,   `w_city` VARCHAR(25) ,   `w_county` VARCHAR(25) ,   `w_state` VARCHAR(25) ,   `w_zip` bigint,   `w_country` VARCHAR(100) ,   `w_gmt_offset` bigint,  PRIMARY KEY ( `w_warehouse_sk` ));
复制代码


接下来插入一些测试数据


SQL


INSERT INTO warehouse VALUES(1,"AAAAAAAABAAAAAAA","Conventional childr",977787,651,"6th" ,"Parkway","Suite 470","Shiloh","San Miguel County","NM",89275,"United States",-7),(2,"AAAAAAAACAAAAAAA","Important issues liv",138504,600,"View First","Avenue","Suite P","Fairview","Ziebach County","SD",55709,"United States",-6),(3,"AAAAAAAADAAAAAAA","Doors canno",294242,534,"Ash Laurel","Dr.","Suite 0","Five Points","Ziebach County","SD",56098,"United States",-6),(4,"AAAAAAAAEAAAAAAA","Bad cards must make.",621234,368,"Wilson Elm","Drive","Suite 80","Five Points","Richland County","OH",46098,"United States",-5),(5,"AAAAAAAAAAAAAAA","Plain,reluctant",514427,410,"3rd" ,"ST","Suite 370","Shiloh","Ziebach County","SD",59275,"United States",-6),(6,"AAAAAAAAGAAAAAAA","Local,mass universi",838797,957,"Lincoln Adams","Dr.","Suite X","Five Points","Oglethorpe County","GA",36098,"United States",-5);
INSERT INTO catalog_sales VALUES (2452539 , 62417 , 2452614 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20225 , 15 , 3 , 47071 , 1169 , 144033688 , 77 , 49.08 , 130.55 , 60.05 , 5428.5 , 4623.85 , 3779.16 , 10052.35 , 92.47 , 0.0 , 3417.26 , 4623.85 , 4716.32 , 8041.11 , 8133.58 , 844.69), (2452539 , 62417 , 2452595 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20465 , 12 , 2 , 138789 , 122 , 144033688 , 25 , 76.99 , 147.82 , 0.0 , 3695.5 , 0.0 , 1924.75 , 3695.5 , 0.0 , 0.0 , 1330.25 , 0.0 , 0.0 , 1330.25 , 1330.25 , -1924.75), (2452539 , 62417 , 2452567 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20354 , 18 , 5 , 75657 , 806 , 144033688 , 72 , 19.68 , 45.06 , 39.2 , 421.92 , 2822.4 , 1416.96 , 3244.32 , 169.34 , 0.0 , 875.52 , 2822.4 , 2991.74 , 3697.92 , 3867.26 , 1405.44), (2452539 , 62417 , 2452612 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20606 , 9 , 1 , 279408 , 588 , 144033688 , 70 , 97.07 , 125.22 , 102.68 , 1577.8 , 7187.6 , 6794.9 , 8765.4 , 431.25 , 0.0 , 1489.6 , 7187.6 , 7618.85 , 8677.2 , 9108.45 , 392.7), (2452539 , 62417 , 2452624 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 22191 , 3 , 1 , 13807 , 811 , 144033688 , 75 , 78.43 , 112.93 , 60.98 , 3896.25 , 4573.5 , 5882.25 , 8469.75 , 411.61 , 0.0 , 3557.25 , 4573.5 , 4985.11 , 8130.75 , 8542.36 , -1308.75), (2452539 , 62417 , 2452580 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 22277 , 19 , 2 , 23745 , 1165 , 144033688 , 26 , 29.46 , 68.34 , 33.48 , 906.36 , 870.48 , 765.96 , 1776.84 , 0.0 , 0.0 , 124.28 , 870.48 , 870.48 , 994.76 , 994.76 , 104.52), (2452539 , 62417 , 2452548 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20314 , 8 , 2 , 131695 , 7 , 144033688 , 34 , 85.14 , 136.22 , 19.07 , 3983.1 , 648.38 , 2894.76 , 4631.48 , 25.93 , 0.0 , 555.56 , 648.38 , 674.31 , 1203.94 , 1229.87 , -2246.38), (2452539 , 62417 , 2452570 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 20462 , 17 , 1 , 218911 , 1484 , 144033688 , 48 , 48.35 , 88.96 , 61.38 , 1323.84 , 2946.24 , 2320.8 , 4270.08 , 0.0 , 0.0 , 2135.04 , 2946.24 , 2946.24 , 5081.28 , 5081.28 , 625.44), (2452539 , 62417 , 2452603 , 4961658 , 370240 , 5575 , 2777357 , 4961658 , 370240 , 5575 , 2777357 , 30 , 22370 , 18 , 6 , 172341 , 622 , 144033688 , 74 , 43.45 , 122.96 , 33.19 , 6642.98 , 2456.06 , 3215.3 , 9099.04 , 49.12 , 0.0 , 2274.76 , 2456.06 , 2505.18 , 4730.82 , 4779.94 , -759.24), (2452539 , 16946 , 2452624 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20277 , 4 , 3 , 136947 , 641 , 144033689 , 93 , 34.76 , 74.73 , 17.18 , 5352.15 , 1597.74 , 3232.68 , 6949.89 , 63.9 , 0.0 , 764.46 , 1597.74 , 1661.64 , 2362.2 , 2426.1 , -1634.94), (2452539 , 16946 , 2452609 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20469 , 8 , 6 , 82428 , 2 , 144033689 , 58 , 9.84 , 10.13 , 6.17 , 229.68 , 357.86 , 570.72 , 587.54 , 14.31 , 0.0 , 158.34 , 357.86 , 372.17 , 516.2 , 530.51 , -212.86), (2452539 , 16946 , 2452580 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20386 , 18 , 1 , 105888 , 135 , 144033689 , 100 , 62.86 , 173.49 , 32.96 , 14053.0 , 3296.0 , 6286.0 , 17349.0 , 71.19 , 1516.16 , 1561.0 , 1779.84 , 1851.03 , 3340.84 , 3412.03 , -4506.16), (2452539 , 16946 , 2452613 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20559 , 4 , 6 , 109273 , 1327 , 144033689 , 22 , 60.04 , 64.84 , 27.23 , 827.42 , 599.06 , 1320.88 , 1426.48 , 17.97 , 0.0 , 670.34 , 599.06 , 617.03 , 1269.4 , 1287.37 , -721.82), (2452539 , 16946 , 2452587 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20634 , 9 , 1 , 100591 , 332 , 144033689 , 8 , 61.81 , 100.75 , 83.62 , 137.04 , 668.96 , 494.48 , 806.0 , 33.44 , 0.0 , 394.88 , 668.96 , 702.4 , 1063.84 , 1097.28 , 174.48), (2452539 , 16946 , 2452586 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20471 , 14 , 2 , 150157 , 855 , 144033689 , 50 , 80.2 , 144.36 , 135.69 , 433.5 , 6784.5 , 4010.0 , 7218.0 , 542.76 , 0.0 , 3464.5 , 6784.5 , 7327.26 , 10249.0 , 10791.76 , 2774.5 ), (2452539 , 16946 , 2452569 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20436 , 7 , 1 , 204859 , 576 , 144033689 , 27 , 41.17 , 112.8 , 109.41 , 91.53 , 2954.07 , 1111.59 , 3045.6 , 206.78 , 0.0 , 91.26 , 2954.07 , 3160.85 , 3045.33 , 3252.11 , 1842.48 ), (2452539 , 16946 , 2452627 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20730 , 1 , 4 , 76770 , 142 , 144033689 , 57 , 72.81 , 104.84 , 13.62 , 5199.54 , 776.34 , 4150.17 , 5975.88 , 15.52 , 0.0 , 537.51 , 776.34 , 791.86 , 1313.85 , 1329.37 , -3373.83 ), (2452539 , 16946 , 2452579 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20264 , 5 , 5 , 3381 , 104 , 144033689 , 26 , 96.86 , 213.09 , 196.04 , 443.3 , 5097.04 , 2518.36 , 5540.34 , 50.97 , 0.0 , 110.76 , 5097.04 , 5148.01 , 5207.8 , 5258.77 , 2578.68), (2452539 , 16946 , 2452611 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20238 , 10 , 2 , 226405 , 281 , 144033689 , 21 , 50.34 , 123.33 , 45.63 , 1631.7 , 958.23 , 1057.14 , 2589.93 , 0.0 , 95.82 , 595.56 , 862.41 , 862.41 , 1457.97 , 1457.97 , -194.73), (2452539 , 16946 , 2452564 , 4096275 , 861512 , 6396 , 60433 , 4096275 , 861512 , 6396 , 60433 , 24 , 20400 , 17 , 4 , 242191 , 711 , 144033689 , 4 , 39.54 , 48.63 , 4.37 , 177.04 , 17.48 , 158.16 , 194.52 , 0.87 , 0.0 , 5.8 , 17.48 , 18.35 , 23.28 , 24.15 , -140.68 )
复制代码


这两张表中的 w_warehouse_sk 和 cs_warehouse_sk 可做关联,用于后续的数据处理。

第二步:跨区域网络配置

如无跨区域的资源需要此步骤可省略。


由于 Glue 工作于宁夏区而数据源 RDS 在北京区。RDS 作为交易数据库通常位于私有子网,不连通互联网。所以需要调通 Glue 和 RDS 之间的网络配置。假设北京的 RDS 位于 VPC 1 (vpc-1111)网段为 10.0.0.0/16,AWS Glue 任务会使用 VPC 2(vpc-2222)网段为 172.31.0.0/16。网段不能重叠否则无法建立对等连接。


在北京区域的 VPC 控制台创建一个 VPC 对等连接,请求方为 vpc-1111,接收方为 vpc-2222。



创建完成后需要到宁夏区域 vpc-2222 的 VPC 控制台对等连接中接受此请求。等待状态变为绿色的“活动”,说明对等连接生效。



编辑 VPC-1111 的路由表,该路由表要关联给 RDS 所在的子网。加上 VPC-2222 的网段到对等连接的路由。



同理编辑 VPC-2222 的路由表,该路由表要关联给 Glue 指定的子网。加上 VPC-1111 的网段到对等连接的路由。



现在 VPC-1111 和 VPC-2222 之间的私有网络已经打通,如果对等连接配置有任何问题请参照官网


除了网络外,还需要配置安全组规则,对于 Glue 和 RDS 所在的网段开放。假设 RDS 使用安全组 sg-1111,Glue 将会使用安全组 sg-2222(如没有请先创建)。


Sg-1111 入站规则配置例子如下(出站全放开):



Sg-2222 入站规则配置例子如下(加一条对 sg-2222 全开入站规则,出站全放开):



第三步:配置 Glue 工作流

配置 AWS Glue 数据源连接

连接是为了指定 VPC,子网和安全组,以便 Glue 知道用什么样的网络配置通信。如果是访问非 VPC 内资源如 S3 则不需要创建连接。


1.登陆 AWS Glue 控制台,选择宁夏区,选择连接,创建一个新 MySQL 8 连接。



2.连接类型选择 JDBC,并把第一步中的 RDS JDBC url 用户名和密码填写上去,VPC,子网和安全组选择上一步中的 vpc-2222,绑定了路由表的任意子网和 sg-2222。注意:Glue 所在的子网需要有 S3 Endpoint 的路由。


创建成功连接后不要测试连接,因为 Glue 默认的 MySQL JDBC 驱动不支持 MySQL 8 版本。


配置 AWS Glue 作业

Glue 的作业是定义单个的 ETL 操作,接下来我们会定义三个作业:从 RDS 读取 catalog_sales,从 RDS 读取 warehouse,和聚合两张表。


1.选择宁夏区域,并选择添加作业



2.作业属性中的 IAM 角色选择一个带有 AmazonS3FullAccess 策略的角色,如没有请创建。其他配置如图所示。



3.在“安全配置、脚本库和作业参数(可选)”设置中配置作业参数,参数值之后可以改



4.下一步的连接选择前一步创建的 MySQL 8 连接。再下一步到脚本编辑页面,贴上如下脚本。点击保存并退出。同时下载mysql-connector-java-8.0.18.jar,并上传到 jdbcS3path 所指定的 S3 存储桶位置。


SQL


import sysfrom awsglue.transforms import *from awsglue.utils import getResolvedOptionsfrom pyspark.context import SparkContext, SparkConffrom awsglue.context import GlueContextfrom awsglue.job import Jobimport timefrom pyspark.sql.types import StructType, StructField, IntegerType, StringTypesc = SparkContext()glueContext = GlueContext(sc)spark = glueContext.spark_session
args = getResolvedOptions(sys.argv,['tablename','dbuser','dbpassword','dburl','jdbcS3path','s3OutputPath'])#改成自己的mysql8connection_mysql8_options = { "url": args['dburl'], "dbtable": args['tablename'], "user": args['dbuser'], "password": args['dbpassword'], "customJdbcDriverS3Path": args['jdbcS3path']+"mysql-connector-java-8.0.18.jar", #先编译jdbc jar 传到S3 "customJdbcDriverClassName": "com.mysql.cj.jdbc.Driver"}# 从MySQL中读取数据df_catalog = glueContext.create_dynamic_frame.from_options(connection_type="mysql",connection_options=connection_mysql8_options)#加上filter 一般增量加载可以按照更新时间来过滤df_filter = Filter.apply(frame = df_catalog, f = lambda x: x["cs_sold_date_sk"] >=2452539)#写入s3位置writer = glueContext.write_dynamic_frame.from_options(frame = df_filter, connection_type = "s3", connection_options = {"path": args['s3OutputPath']+args['tablename']}, format = "parquet")
复制代码


5.此任务把 RDS 里的 catalog_sales 表加载到 S3 中,同样的配置创建另一个作业加载 warehouse 表,更改作业配置和脚本。脚本如下:


SQL


import sysfrom awsglue.transforms import *from awsglue.utils import getResolvedOptionsfrom pyspark.context import SparkContext, SparkConffrom awsglue.context import GlueContextfrom awsglue.job import Jobimport timefrom pyspark.sql.types import StructType, StructField, IntegerType, StringTypesc = SparkContext()glueContext = GlueContext(sc)spark = glueContext.spark_session
args = getResolvedOptions(sys.argv,['tablename','dbuser','dbpassword','dburl','jdbcS3path','s3OutputPath'])connection_mysql8_options = { "url": args['dburl'], "dbtable": args['tablename'], "user": args['dbuser'], "password": args['dbpassword'], "customJdbcDriverS3Path": args['jdbcS3path']+"mysql-connector-java-8.0.18.jar", #先编译jdbc jar 传到S3 "customJdbcDriverClassName": "com.mysql.cj.jdbc.Driver"}# 从MySQL中读取数据df_warehouse = glueContext.create_dynamic_frame.from_options(connection_type="mysql",connection_options=connection_mysql8_options)#写入s3位置writer = glueContext.write_dynamic_frame.from_options(frame = df_warehouse, connection_type = "s3", connection_options = {"path": args['s3OutputPath']+args['tablename']}, format = "parquet")
复制代码



6.接下来还需要创建一个聚合任务,聚合两张表生成聚合表可以供报表查询。创建流程还是同上(连接不是必须选的,S3是公网资源),传入作业参数为
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline12.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline12.jpg)
脚本使用Glue中存储的S3数据结构,具体存储S3的数据结构将在爬网程序章节介绍。
SQL

复制代码


import sys


from awsglue.transforms import *


from awsglue.utils import getResolvedOptions


from pyspark.context import SparkContext, SparkConf


from awsglue.context import GlueContext


from awsglue.job import Job


import time


from pyspark.sql.types import StructType, StructField, IntegerType, StringType


sc = SparkContext()


glueContext = GlueContext(sc)


spark = glueContext.spark_session


args = getResolvedOptions(sys.argv,[‘s3OutputPath’])


df=spark.sql(“select w_warehouse_name, w_city,count(*) as cnt_sales, sum(cs_list_price) as total_revenue,sum(cs_net_profit_double) as total_net_profit,sum(cs_wholesale_cost) as total_cost from default.catalog_sales join default.warehouse on cs_warehouse_sk = w_warehouse_sk group by w_warehouse_name, w_city”)


df.write.mode(“overwrite”).format(“parquet”).save(args[‘s3OutputPath’]+“warehouse_report/”)



### 创建爬网程序
数据在S3上之后失去了在数据库中的表结构,爬网程序则是爬取S3中数据的表结构并能使其他程序如Apache Presto或者Amazon Athena直接查询S3中的数据。下面我们将配置一个爬网程序爬取刚刚加载到S3中的catalog_sales 和warehouse的数据结构。
1.创建新的爬网程序
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline13.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline13.jpg)
2.选择S3位置,如果两张表放在同一个文件夹路径下,可以提供共同的父路径。如果没有共享父路径可以逐一添加。
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline14.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline14.jpg)
3.IAM角色可以选择和Glue 工作一样的(需要S3的读权限),计划选择按需,输出数据库可以选择default。其他可以保持默认。
4.如果Glue RDS工作完成后,运行爬网程序并成功后可以看到Glue的数据目录中可以看到两张表:
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline15.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline15.jpg)
### 创建Glue工作流
如果需要编排复杂的数据处理流程则需要处理任务之间的依赖关系,Glue的工作流程功能可以解决上下游依赖及定时问题。
1.首先创建一个工作流程
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline16.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline16.jpg)
2.创建好后在工作流程中添加一个按需的触发器作为起始点
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline17.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline17.jpg)[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline18.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline18.jpg)
3.再添加了之前创建的两个RDS摄取工作,Glue工作和工作之间需要触发器串联,接下来添加一个事件触发器
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline19.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline19.jpg)
4.触发器选择事件触发,并且要选择All监视事件后出发,这个触发器会同时用于两个RDS工作。
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline20.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline20.jpg)
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline21.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline21.jpg)
5.接下来在触发器后添加爬网程序,后触发聚合Glue工作,完成的工作流程如下。
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline22.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline22.jpg)
可根据需要在聚合任务后在添加一个爬网程序来爬取新生成表的结构。
终于我们完成一个完整的ETL处理流程的创建了。由于工作流程的起始触发器是按需,所以需要手动选择工作流程并在操作中选择运行。如果需要定时任务,则可以把起始触发器修改为定时类型。用Glue爬好的S3表可以直接被Amazon Athena服务查询哟,感兴趣的快去试一试吧!
**作者介绍:**贺浏璐,AWS解决方案架构师,负责AWS云计算方案的咨询和架构设计,同时致力于大数据方面的研究和应用。曾担任亚马逊大数据团队数据工程师,在大数据架构,数据管道业务处理,和Business Intelligence方面有丰富的实操经验。
**原文链接:**https://amazonaws-china.com/cn/blogs/china/quickly-build-an-aws-glue-based-extracting-cross-region-mysql-8-data-pipeline/
复制代码


2020-03-04 20:52847

评论

发布
暂无评论
发现更多内容

一网打尽!音乐高手都在使用的打谱软件不藏私推荐!

懒得勤快

肝!Spring JDBC持久化层框架“全家桶”教程

热爱java的分享家

Java 架构 程序人生 编程语言 架构师

使用 Node.js 消费SAP Cloud for Customer上的Web service

汪子熙

node.js SAP C4C 11月日更

盲盒开发盲盒系统开发定制

解决文件存储难题 openGauss隆重推出段页式特性

openGauss

Hadoop实战篇-集群版(2)

进击的梦清

大数据 hadoop zookeeper

有一说一,阿里内部SpringBoot王者晋级之路全彩小册开源,让我开了眼

热爱java的分享家

Java 架构 面试 程序人生 编程语言

关于openGauss账本数据库:你想知道的这里都有

openGauss

CSS奇技淫巧之滤镜(二)drop-shadow

Augus

CSS 11月日更

HBase shell get命令从二进制还原真实值

WindFlying

987页的Java面试宝典,看完才发现,应届生求职也没那么难

热爱java的分享家

Java 架构 面试 程序人生 编程语言

AI界的革命!终于可以自动标注了!

百度开发者中心

AI 自动标注工具

从0到10彻底搞懂信息流【投放系统】

水泽山林

系统架构 推荐系统 智能投放 内容平台

45岁程序员发求职贴:精通各种技术体系,却连个面试机会都没有…

Java高级开发

Java 程序员 面试 职场

“太白”团队加入OpenInfra Labs,联合社区成员共同完善多云管理技术

论文解读丨LayoutLM: 面向文档理解的文本与版面预训练

华为云开发者联盟

CV 预训练 LayoutLM模型 无标注 文档理解

dart系列之:元世界pubspec.yaml文件详解

程序那些事

flutter dart 程序那些事 11月日更

ABAP 和 Java 的单元测试 Unit Test

汪子熙

Java abap 11月日更 JavaSAP

Ustore在openGauss闪亮登场,重构openGauss数据存储的灵魂

openGauss

华为云GaussDB NoSQL云原生多模数据库的超融合实践

华为云数据库小助手

GaussDB 华为云数据库 GaussDB NoSQL

盲盒app开发盲盒小程序开发

如何用EasyRecovery恢复中毒U盘中丢失的文件

淋雨

EasyRecovery

这个无敌设计,可以解析并运算任意数学表达式

Tom弹架构

Java 架构 设计模式

低代码——不应该只是玩具

行云创新

云原生 低代码 开发 高效

Python代码阅读(第59篇):根据value查询字典key值

Felix

Python 编程 阅读代码 字典 Python初学者

制作 Flask 程序容器镜像

wong

Python flask k8s Dockerfile

快速剪辑-助力度咔智能剪辑提效实践

百度Geek说

架构 后端

SOLID原则之 单一职责原则

面向对象的猫

SOLID

我就获取个时间,机器就down了

安第斯智能云

Linux 后端

基于MySQL binlog日志,实现Elasticsearch近实时同步实践

热爱java的分享家

Java 架构 程序人生 编程语言 经验分享

为何飞书成了先进企业的标配?

ToB行业头条

快速构建基于 AWS Glue 的抽取跨区域 MySQL 8 的数据管道_文化 & 方法_AWS_InfoQ精选文章