写点什么

智能运筹助力企业提升决策效率、优化决策质量

  • 2020-01-21
  • 本文字数:1858 字

    阅读完需:约 6 分钟

智能运筹助力企业提升决策效率、优化决策质量

在人工智能和大数据时代,越来越多的云上数据和越来越智能的模型开始辅助人们做出各种最优决策,从运营效率、成本节约、最优配置等方方面面,实现降本增效,进一步提升商业效率。京东、美团、滴滴、顺丰等众多知名厂商,都通过运筹优化平台,改造其供应链、智能派单、司乘匹配、智能分拣等等。


零售行业环节众多,从生产到仓库、到线下门店的供应链中,即使最终产品的需求非常稳定,长鞭效应也经常会发生。原因在于供应链中各节点只根据其相邻的需求信息进行生产或者供应决策时,需求信息的不真实性会沿着供应链逆流而上,逐级放大。更准确的需求预测只是决策的一个步骤,还有随着销量等业务变动过程和流程管理过程中的库存订货决策、价格波动决策、短缺博弈决策等决策问题。长鞭效应表明即使预测再精准,如果对后续的流程决策过程没有有效管理,精准预测带来的收益也会被不合理的安全库存带来的损失抵消掉。


很多企业的决策过程往往过于依赖对应岗位的个人经验,而企业员工在这些事情上一方面获取的信息不完全,另一方面决策环节存在大量估算对比的重复工作,导致决策方案输出的低效和不稳定。员工重复劳动限制了个人成长,企业耗费了人力资源和宝贵的决策判断时间。针对企业优秀计划决策经验方法的快速复制、集中高效决策、快速信息反馈和计划决策效果预估等需求,奇点云在数据中台的基础上,推出了决策引擎的应用。

奇点云决策引擎

数据采集与管理完善,对数据进行信息提取,了解事物的规律,并不能释放数据的巨大价值。数据要产生实际价值,必须真正提升决策质量,实现决策的自动化、流程化、规范化。



在为客户完成数据中台的开发后,提供基于中台数据资产的智能决策服务,根据场景的不同,选择最大收益期望决策、最大最小收益决策、最小最大后悔值决策、马尔科夫博弈决策等决策方式,并结合运筹优化算法和强化学习对决策目标进行求解。   


现实生活中,有很多问题可以描述成优化问题,然后利用运筹优化的知识加以解决。



比较核心的两个步骤是:建模(modeling)和求解(solve)。奇点云根据成熟的软件工具包(cplex, gurobi, glpk,lpsolve, scip …)给出经典运筹优化问题的 baseline 解,快速上线试运行。在运行的过程中根据结果评估的核心指标,结合运筹优化算法和强化学习,对算法和求解过程进一步优化,使得计划决策模型、求解过程、评估体系能够满足客户业务发展所需的计划决策流程。


奇点云预测引擎以需求预测作为切入点,决策引擎则关注执行过程中的计划决策效率和决策质量。对于商品的季节性的影响和市场的供应的不稳定性需要补货决策合理跟进;铺货完成后,具体仓库到门店之间的补货,门店到门店之间的调货,依然需要客户的工作人员进行大量的工作,来生成每一期的补货、调货方案;为了完成铺货、补调货的同时保证市场状态的松紧平衡,也需要一个合理的分配方案。


计划决策的核心是库存的分配,包含仓库库存、在途库存、店铺库存等。库存管理是对制造业或服务业生产、经营全过程的各种物品,产成品以及其他资源进行管理和控制,使其储备保持在经济合理的水平上。利用历史数据实现实时更新的需求预测,为企业提供补货建议。合理地设计仓储货架摆放,商品区域划分,高低货架摆放,入库出库最优路径调配等,可以为企业节省巨额的成本以及大量人力劳动成本。可以减少资金占用,提升库存周转率,提升自动化管理,提高人员与设备利用率,降低库存负担。


运筹优化算出最优调货策略:


奇点云某大时尚客户,线下门店有几千家,每家店有几百个 sku,通过历史数据预测每家店铺每个 sku 在未来的销量,必然有的店铺会出现库存不足,而有的店铺出现库存积压的问题,那么通过将库存积压的店铺的商品,调货到库存不足的店铺,将会提高公司的整体毛利。店铺与店铺之间的物流成本不同,缺货和积压的商品种类也有差异,通过运筹规划中的混合整数规划的方法,计算出最优的调货策略,混合整数规划的模型可以抽象建模如下:



通过对调补货过程的建模求解,帮助客户业务人员对应的重复工作量减少了 80%,计划决策时间缩短了三天。业务人员能够在决策时看到更多的数据依据,计划决策输入输出清晰高效。

结语

客户的业务流程中,大量环节会涉及到决策问题,如何高效利用数据来驱动决策是奇点云决策引擎的核心。在上篇 StartDT AI Lab 专栏文章中我们提到了精准需求预测的重要性,而实际中预测总是有偏差,带有不确定性,需要在不同环节产生的多级不确定性情况下做出决策。结合需求预测和决策引擎,让数据决策更加智能。未来我们会不断在需求预测与决策引擎领域耕耘,帮助客户创造更大的价值。


作者:明觉、涉川 @奇点云


2020-01-21 14:021843
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 557.1 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

文本向量化模型新突破——acge_text_embedding 勇夺 C-MTEB 榜首

中杯可乐多加冰

rag 文本嵌入模型 文本向量化 文本嵌入

提示词优化的自动化探索:Automated Prompt Engineering

Baihai IDP

程序员 AI 企业号 4 月 PK 榜 Prompt Engineering 提示词工程

大模型下B端前端代码辅助生成的思考与实践 | 得物技术

得物技术

JavaScript AI web前端 ChatGPT 企业号 4 月 PK 榜

魔搭×函数计算:实现大模型快速部署,加速AI应用落地

百度开发者中心

人工智能 大模型

性能问题分析优化实践案例

老张

高可用 性能优化 性能测试 稳定性保障

大模型,为什么非得和「弱智吧」过不去?

脑极体

AI

观测云产品更新 | 管理、容器、异常追踪、场景图表、DQL等

观测云

监控

火山引擎ByteHouse:OLAP如何支持超高QPS点查?

字节跳动数据平台

大数据 企业号2024年4月PK榜

大模型Chatbots评估新视角:结合定性与程序方法的实践探索

百度开发者中心

人工智能 大模型

淘宝/天猫商品评论API:实时追踪用户反馈,洞悉市场动态

技术冰糖葫芦

api 货币化 API 文档 pinduoduo API

以算力深挖数据应用价值!和鲸助力北京市市场监管数据应用创新竞赛圆满收官!

ModelWhale

大数据 数据应用 数据大模型

大模型,为什么非得和「弱智吧」过不去?

白洞计划

AI

大模型的现在进行时:走出对话框,走向产业端

Alter

IAM赋能数字化转型

芯盾时代

iam 统一身份认证 业务安全

如何延长LED显示屏的使用寿命

Dylan

环境 角色 LED显示屏 全彩LED显示屏 led显示屏厂家

百度沈抖:智能,生成无限可能

百度Geek说

AI 百度智能云 企业号 4 月 PK 榜

大模型区域落地再加速!百度“文心中国行”西部首站落地成都锦江

飞桨PaddlePaddle

百度 BAIDU 百度飞桨 文心一言 文心大模型

Appium控件互动攻略:提升自动化测试效率的必备方法大揭秘!

测吧(北京)科技有限公司

测试

《2023年度快团团行业洞察报告》呱呱爆品重磅发布!

极客天地

揭露 FileSystem 引起的线上 JVM 内存溢出问题

vivo互联网技术

JVM 内存泄露 OOM 内存溢出

网站打开504,504网关超时可能是哪些原因导致

德迅云安全杨德俊

香港的云主机怎么样?为网站运行和响应有哪些帮助?

一只扑棱蛾子

云主机

Penpad获Gate Labs以及Scroll联创Sandy的投资

西柚子

Appium控件互动攻略:提升自动化测试效率的必备方法大揭秘!

测试人

软件测试 自动化测试 测试开发

智能运筹助力企业提升决策效率、优化决策质量_AI&大模型_明觉_InfoQ精选文章