写点什么

深度学习在高德 ETA 应用的探索与实践

  • 2020-06-18
  • 本文字数:1687 字

    阅读完需:约 6 分钟

深度学习在高德ETA应用的探索与实践

1.导读

驾车导航是数字地图的核心用户场景,用户在进行导航规划时,高德地图会提供给用户 3 条路线选择,由用户根据自身情况来决定按照哪条路线行驶。



同时各路线的 ETA(estimated time of arrival,预估到达时间) 会直接显示给用户,这是用户关心的核心点之一。用户给定起点和终点后,我们的任务是预测起终点的 ETA,ETA 的准确率越高,给用户带来的出行体验越好。

2.基于深度学习模型的探索和实践

2.1 模型选择

传统机器学习模型在 ETA 中,比较常用的有线性回归、RF(随机森林)、GBDT(梯度提升决策树)等回归预测类模型。线性模型表达能力较差,需要大量特征工程预先分析出有效的特征;RF 通过样本随机和特征随机的方式引入更多的随机性,解决了决策树泛化能力弱的问题;GBDT 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到回归的算法。


传统机器学习模型相对简单易懂,也能达到不错的效果,但存在两个问题:


  • 模型的表达能力跟选取的特征有关,需要人工事先分析出有效的特征。

  • 没有考虑上游对下游路段的影响,产生了如丢失上下游关联信息、下游受上游影响导致的不确定性等问题。


第一个问题很好理解,深度学习模型能很好地弥补这方面。针对第二个问题,以历史速度信息选取存在的不确定性为例来说明一下,历史速度信息是一个区分周一到周日七个工作日、10 分钟间隔的历史平均时间,可以根据该路段的预计进入时间所在 10 分钟区间来选定。如下图(历史平均速度)从 0:00-24:00 的变化曲线,可以看到一天中特别是早晚高峰,速度值存在较大波动。



而在选取历史平均时间时,依赖的是预计进入时间,这个时间依赖于上游路段的预计通行时间,因此其选取存在不确定性,进而导致 ETA 计算不准确。


考虑到以上问题的存在,我们选择利用 RNN 的时间序列思想将路线中上下游路段串联起来进行路段 ETA 的预测。


另外考虑到 RNN 存在的长依赖问题,且结合实际业务情况,我们选择使用 LSTM 模型来进行建模,LSTM 的门结构具有的选择性还能让模型自行学习选择保留哪些上游的特征信息进行预测。

2.2 网络架构


上图为整个模型的框架图,主要分为两部分,使用 LSTM 模块对路线中的路段 ETA 的预测和最终使用 N 层全连接模块对累计路段 ETA 及路线各特征进行完整路线的 ETA 预测。

2.3 路段 ETA 预测


上图为各路段 ETA 预测使用的 LSTM 结构图,Xt 为路线中第 t 个路段的特征信息,主要包含对应的实时路况信息、历史路况信息、路段的静态特征等。


LSTM 本是输入时间序列数据的模型,我们利用该思想,将路线中各路段序列依次输入模型。

2.4 完整路线 ETA 预测

在 LSTM 模块得到累计路线 ETA 预测值后,结合该路线的静态属性,使用全连接模块将其整合成最终输出的完整路线 ETA 预测值。


路线的属性特征主要指一些人工提取的特征,如该路线的长度、导航规划发起特征日、是否早晚高峰时段等,用以加强模型在不同场景下的表达能力。


损失函数选用线性回归常用的平方形式:MSE,公式如下:



其中,N 是路线数量,ETA 路线 j 为路线 ETA,即预测值;用户实走 j 为用户在该路线的实走时间,即真值。

3.模型效果

衡量模型效果,即路线上 ETA 的预测值时,主要考虑的是准确率。一般情况下,用户对 ETA 偏长和偏短的容忍度不同,对偏长容忍度更高。比如用户要去机场,ETA 给的时间偏短 10 分钟比偏长 10 分钟对用户的损害更大。因此准确度的指标设计倾向于 ETA 偏长,定义为满足用户一定容忍范围的请求比例,即准确率作为主要衡量指标。


在北京市上的实验结果显示,ETA 准确率得到提升,MSE loss 下降比例 28.2%,效果有了明显的提升。

4.小结

本文介绍了引入深度学习模型,帮助建模导航规划的预估到达时间预测,成功解决了线性模型的不足,也为后续引入更多特征、进行更多探索打开了空间,如历史速度信息的不确定度、时效性、周期性、突发事件、路网结构等。


本文转载自公众号高德技术(ID:amap_tech)。


原文链接


https://mp.weixin.qq.com/s?__biz=Mzg4MzIwMDM5Ng==&mid=2247485006&idx=2&sn=b837e9658599eef64acbab11409601a7&chksm=cf4a5eadf83dd7bb73e340f31ba92c1b3aa74378829793b6d7bba98272d15f42a4509ea747a9&scene=27#wechat_redirect


2020-06-18 10:002479

评论

发布
暂无评论
发现更多内容

HTTP2协议及websocket协议总结

江龙

干货 | 京东技术中台的Flutter实践之路

京东科技开发者

flutter

这可能是关于编程指南的最实用指南了

华为云开发者联盟

开发者 软件开发 语言

力扣解题:第三题(个人思路整理)

人语驿边桥

力扣

架构师训练营第三周课后作业

天涯若海

架构师训练营 第三周作业(手写单例模式)

springH₂O

架构训练营

《高效程序员的45个习惯:敏捷开发修炼之道》.pdf

田维常

电子书

屏读时代,我们患上了注意力缺失候群症

脑极体

GrowingIO 响应式编程探索和实践

GrowingIO技术专栏

响应式编程

架构师训练营 - 第三周学习总结

joshuamai

MySQL中特别实用的几种SQL语句送给大家

陈哈哈

SQL优化 实用SQl语句 高性能SQL

TCP梳理总结

江龙

一周信创舆情观察(10.26~11.1)

统小信uos

啥是数据库范式

Simon

MySQL 数据库 数据库设计

低代码开发不靠谱?看低代码开发在物联网APP开发中的应用

华为云开发者联盟

技术 软件开发 代码

LeetCode题解:231. 2的幂,递归,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

【得物技术】数据分析 - 生活品类社区内容精选池模型

得物技术

数据分析 得物技术部 得物技术 社区内容 精选池模型

一道比较运算符相关的面试题把我虐的体无完肤

Gopher指北

解决大中型浏览器(Chrome)插件开发痛点:自定义热更新方案——1.原理分析及构建部署实现

梁龙先森

Java chrome 大前端 浏览器 技术方案

1分钟带你解锁Angular

Leo

学习 大前端 angular

华为发布5GtoB核心网建设白皮书

华为云开发者联盟

5G 边缘技术

谈谈敏捷开发概念和迭代开发方案

Philips

敏捷开发 快速开发

快快使用ModelArts,零基础小白也能玩转AI!

华为云开发者联盟

人工智能 开发者 开发

阿里P8大牛精心整理,GitHub上超火的《Java工程师成神之路》从基础,到高级、底层、架构、进阶、扩展,囊括了Java体系内的所有知识点。

Java架构之路

Java 程序员 架构 面试 编程语言

GitHub上超牛的Java进阶教程,汇总Java生态圈常用技术框架、开源中间件,系统架构、数据库、大公司架构案例、常用三方类库、项目管理、线上问题排查、个人成长、思考等知识

Java架构之路

Java 程序员 架构 面试 编程语言

从技术到应用实践 揭秘京东区块链布局全景

京东科技开发者

区块链 区块链方案 供应链

LeetCode题解:231. 2的幂,迭代,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

从广西的新基建耕种,读懂一颗名为智能体的种子

脑极体

6年Java开发经验,蚂蚁金服面试3+2次,最终有惊无险通过!(已拿offer)

Java架构之路

Java 程序员 架构 面试 编程语言

“软件教父”花费20年,教你如何在应用层混迹的风生水起

小Q

Java 学习 架构 面试 应用

应用层软件开发教父教你如何重构,资深程序员必备专业技能

小Q

Java 学习 架构 面试 重构

深度学习在高德ETA应用的探索与实践_AI&大模型_高德技术_InfoQ精选文章