写点什么

深度学习在高德 ETA 应用的探索与实践

  • 2020-06-18
  • 本文字数:1687 字

    阅读完需:约 6 分钟

深度学习在高德ETA应用的探索与实践

1.导读

驾车导航是数字地图的核心用户场景,用户在进行导航规划时,高德地图会提供给用户 3 条路线选择,由用户根据自身情况来决定按照哪条路线行驶。



同时各路线的 ETA(estimated time of arrival,预估到达时间) 会直接显示给用户,这是用户关心的核心点之一。用户给定起点和终点后,我们的任务是预测起终点的 ETA,ETA 的准确率越高,给用户带来的出行体验越好。

2.基于深度学习模型的探索和实践

2.1 模型选择

传统机器学习模型在 ETA 中,比较常用的有线性回归、RF(随机森林)、GBDT(梯度提升决策树)等回归预测类模型。线性模型表达能力较差,需要大量特征工程预先分析出有效的特征;RF 通过样本随机和特征随机的方式引入更多的随机性,解决了决策树泛化能力弱的问题;GBDT 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到回归的算法。


传统机器学习模型相对简单易懂,也能达到不错的效果,但存在两个问题:


  • 模型的表达能力跟选取的特征有关,需要人工事先分析出有效的特征。

  • 没有考虑上游对下游路段的影响,产生了如丢失上下游关联信息、下游受上游影响导致的不确定性等问题。


第一个问题很好理解,深度学习模型能很好地弥补这方面。针对第二个问题,以历史速度信息选取存在的不确定性为例来说明一下,历史速度信息是一个区分周一到周日七个工作日、10 分钟间隔的历史平均时间,可以根据该路段的预计进入时间所在 10 分钟区间来选定。如下图(历史平均速度)从 0:00-24:00 的变化曲线,可以看到一天中特别是早晚高峰,速度值存在较大波动。



而在选取历史平均时间时,依赖的是预计进入时间,这个时间依赖于上游路段的预计通行时间,因此其选取存在不确定性,进而导致 ETA 计算不准确。


考虑到以上问题的存在,我们选择利用 RNN 的时间序列思想将路线中上下游路段串联起来进行路段 ETA 的预测。


另外考虑到 RNN 存在的长依赖问题,且结合实际业务情况,我们选择使用 LSTM 模型来进行建模,LSTM 的门结构具有的选择性还能让模型自行学习选择保留哪些上游的特征信息进行预测。

2.2 网络架构


上图为整个模型的框架图,主要分为两部分,使用 LSTM 模块对路线中的路段 ETA 的预测和最终使用 N 层全连接模块对累计路段 ETA 及路线各特征进行完整路线的 ETA 预测。

2.3 路段 ETA 预测


上图为各路段 ETA 预测使用的 LSTM 结构图,Xt 为路线中第 t 个路段的特征信息,主要包含对应的实时路况信息、历史路况信息、路段的静态特征等。


LSTM 本是输入时间序列数据的模型,我们利用该思想,将路线中各路段序列依次输入模型。

2.4 完整路线 ETA 预测

在 LSTM 模块得到累计路线 ETA 预测值后,结合该路线的静态属性,使用全连接模块将其整合成最终输出的完整路线 ETA 预测值。


路线的属性特征主要指一些人工提取的特征,如该路线的长度、导航规划发起特征日、是否早晚高峰时段等,用以加强模型在不同场景下的表达能力。


损失函数选用线性回归常用的平方形式:MSE,公式如下:



其中,N 是路线数量,ETA 路线 j 为路线 ETA,即预测值;用户实走 j 为用户在该路线的实走时间,即真值。

3.模型效果

衡量模型效果,即路线上 ETA 的预测值时,主要考虑的是准确率。一般情况下,用户对 ETA 偏长和偏短的容忍度不同,对偏长容忍度更高。比如用户要去机场,ETA 给的时间偏短 10 分钟比偏长 10 分钟对用户的损害更大。因此准确度的指标设计倾向于 ETA 偏长,定义为满足用户一定容忍范围的请求比例,即准确率作为主要衡量指标。


在北京市上的实验结果显示,ETA 准确率得到提升,MSE loss 下降比例 28.2%,效果有了明显的提升。

4.小结

本文介绍了引入深度学习模型,帮助建模导航规划的预估到达时间预测,成功解决了线性模型的不足,也为后续引入更多特征、进行更多探索打开了空间,如历史速度信息的不确定度、时效性、周期性、突发事件、路网结构等。


本文转载自公众号高德技术(ID:amap_tech)。


原文链接


https://mp.weixin.qq.com/s?__biz=Mzg4MzIwMDM5Ng==&mid=2247485006&idx=2&sn=b837e9658599eef64acbab11409601a7&chksm=cf4a5eadf83dd7bb73e340f31ba92c1b3aa74378829793b6d7bba98272d15f42a4509ea747a9&scene=27#wechat_redirect


2020-06-18 10:002133

评论

发布
暂无评论
发现更多内容

大搜车面向复杂业务场景的研发运维体系治理实践

阿里云弹性计算

弹性计算 运维峰会 研发运维

Linux之|etc|group文件

入门小站

Linux

在线HTTP/HTTPS协议GET,POST,RESTful接口测试

入门小站

工具

Ubuntu 基于Nginx1.8的Golang环境搭建(Ubuntu 20.04 + Nginx1.8 + Golang 1.17 )

Owen Zhang

golang nginx ubuntu

深入解析Kafka的offset管理

编程江湖

kafka

在Windows上运行Rainbond,10分钟快速安装

北京好雨科技有限公司

新能力让数据多端协同更便捷,数据跨端迁移更高效!|HDC2021技术分论坛

HarmonyOS开发者

HarmonyOS

最佳实践:青藤云安全发布国内首个K8S ATT&CK攻防矩阵

青藤云安全

2021关键词:重新起航

faiting

数据结构算法 盘点 2021

评委拍案叫绝、项目惊喜不断,这是一届怎样的 Hackathon ?丨TiDB Hackathon 2021 回顾

PingCAP

『征文精选』技术翻译与术语管理技术:专业人说专业话

SphereEx

数据库 翻译 ShardingSphere 征文 SphereEx

当技术重构遇上DDD,如何实现业务、技术双赢?

百度Geek说

架构 后端 DDD 技术债

Ubuntu LNMPR环境搭建(Ubuntu 20.04 + Nginx1.8 + PHP 7.3 + Mysql8.0 + Redis5.0)

Owen Zhang

ubuntu LNMPR

如何打造一款三消类游戏

Shopee技术团队

算法 前端 游戏 Shopee Candy

深入理解百度在离线混部技术

百度Geek说

云计算 云原生 后端

前端开发之JS数组去重方法

@零度

JavaScript 前端开发

JavaScript 浅拷贝与深拷贝

编程江湖

Hoo研究院调研报告 |从公链Terra生态看区块链稳定币的三大核心产品

区块链前沿News

Hoo 虎符交易所 虎符研究院

Hadoop中mapreduce作业日志是如何生成的

华为云开发者联盟

hadoop hdfs mapreduce YARN 作业日志

缓存一致性最佳实践

得物技术

缓存 分布式 数据 一致性 实践

企业管理系统可视化权限功能设计

雯雯写代码

可视化 权限 企业管理系统

抢占先机!为何说区块链通证经济象征未来?

CECBC

Java开发Redis面试题分享

@零度

redis Java 开发

2021 OceanBase 年度报告 | 用技术让海量数据的管理和使用更简单!

OceanBase 数据库

开源 年度报告 oceanbase 成绩单

阿里云何川:开放兼容的云,计算巢帮助合作伙伴云化升级

阿里云弹性计算

弹性计算 年度峰会 计算巢

在Mac上运行Rainbond,10分钟快速安装

北京好雨科技有限公司

技术干货 | ToB 业务场景下自动化测试的实践及探索

网易云信

运维 自动化

Golang:定时器的终止与重置

恒生LIGHT云社区

golang 定时器 语言 Go 语言

跨平台技术实战!百度文库跨平台技术快速落地全过程

百度Geek说

跨平台 PC 百度文库

微服务分布式架构中,如何实现日志链路跟踪

华为云开发者联盟

微服务 日志 分布式架构 logback 链路跟踪

IOS技术分享| anyRTC 互动白板场景实现

anyRTC开发者

ios 音视频 在线教育 视频会议 互动白板

深度学习在高德ETA应用的探索与实践_AI&大模型_高德技术_InfoQ精选文章