写点什么

深度学习在高德 ETA 应用的探索与实践

  • 2020-06-18
  • 本文字数:1687 字

    阅读完需:约 6 分钟

深度学习在高德ETA应用的探索与实践

1.导读

驾车导航是数字地图的核心用户场景,用户在进行导航规划时,高德地图会提供给用户 3 条路线选择,由用户根据自身情况来决定按照哪条路线行驶。



同时各路线的 ETA(estimated time of arrival,预估到达时间) 会直接显示给用户,这是用户关心的核心点之一。用户给定起点和终点后,我们的任务是预测起终点的 ETA,ETA 的准确率越高,给用户带来的出行体验越好。

2.基于深度学习模型的探索和实践

2.1 模型选择

传统机器学习模型在 ETA 中,比较常用的有线性回归、RF(随机森林)、GBDT(梯度提升决策树)等回归预测类模型。线性模型表达能力较差,需要大量特征工程预先分析出有效的特征;RF 通过样本随机和特征随机的方式引入更多的随机性,解决了决策树泛化能力弱的问题;GBDT 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到回归的算法。


传统机器学习模型相对简单易懂,也能达到不错的效果,但存在两个问题:


  • 模型的表达能力跟选取的特征有关,需要人工事先分析出有效的特征。

  • 没有考虑上游对下游路段的影响,产生了如丢失上下游关联信息、下游受上游影响导致的不确定性等问题。


第一个问题很好理解,深度学习模型能很好地弥补这方面。针对第二个问题,以历史速度信息选取存在的不确定性为例来说明一下,历史速度信息是一个区分周一到周日七个工作日、10 分钟间隔的历史平均时间,可以根据该路段的预计进入时间所在 10 分钟区间来选定。如下图(历史平均速度)从 0:00-24:00 的变化曲线,可以看到一天中特别是早晚高峰,速度值存在较大波动。



而在选取历史平均时间时,依赖的是预计进入时间,这个时间依赖于上游路段的预计通行时间,因此其选取存在不确定性,进而导致 ETA 计算不准确。


考虑到以上问题的存在,我们选择利用 RNN 的时间序列思想将路线中上下游路段串联起来进行路段 ETA 的预测。


另外考虑到 RNN 存在的长依赖问题,且结合实际业务情况,我们选择使用 LSTM 模型来进行建模,LSTM 的门结构具有的选择性还能让模型自行学习选择保留哪些上游的特征信息进行预测。

2.2 网络架构


上图为整个模型的框架图,主要分为两部分,使用 LSTM 模块对路线中的路段 ETA 的预测和最终使用 N 层全连接模块对累计路段 ETA 及路线各特征进行完整路线的 ETA 预测。

2.3 路段 ETA 预测


上图为各路段 ETA 预测使用的 LSTM 结构图,Xt 为路线中第 t 个路段的特征信息,主要包含对应的实时路况信息、历史路况信息、路段的静态特征等。


LSTM 本是输入时间序列数据的模型,我们利用该思想,将路线中各路段序列依次输入模型。

2.4 完整路线 ETA 预测

在 LSTM 模块得到累计路线 ETA 预测值后,结合该路线的静态属性,使用全连接模块将其整合成最终输出的完整路线 ETA 预测值。


路线的属性特征主要指一些人工提取的特征,如该路线的长度、导航规划发起特征日、是否早晚高峰时段等,用以加强模型在不同场景下的表达能力。


损失函数选用线性回归常用的平方形式:MSE,公式如下:



其中,N 是路线数量,ETA 路线 j 为路线 ETA,即预测值;用户实走 j 为用户在该路线的实走时间,即真值。

3.模型效果

衡量模型效果,即路线上 ETA 的预测值时,主要考虑的是准确率。一般情况下,用户对 ETA 偏长和偏短的容忍度不同,对偏长容忍度更高。比如用户要去机场,ETA 给的时间偏短 10 分钟比偏长 10 分钟对用户的损害更大。因此准确度的指标设计倾向于 ETA 偏长,定义为满足用户一定容忍范围的请求比例,即准确率作为主要衡量指标。


在北京市上的实验结果显示,ETA 准确率得到提升,MSE loss 下降比例 28.2%,效果有了明显的提升。

4.小结

本文介绍了引入深度学习模型,帮助建模导航规划的预估到达时间预测,成功解决了线性模型的不足,也为后续引入更多特征、进行更多探索打开了空间,如历史速度信息的不确定度、时效性、周期性、突发事件、路网结构等。


本文转载自公众号高德技术(ID:amap_tech)。


原文链接


https://mp.weixin.qq.com/s?__biz=Mzg4MzIwMDM5Ng==&mid=2247485006&idx=2&sn=b837e9658599eef64acbab11409601a7&chksm=cf4a5eadf83dd7bb73e340f31ba92c1b3aa74378829793b6d7bba98272d15f42a4509ea747a9&scene=27#wechat_redirect


2020-06-18 10:002490

评论

发布
暂无评论
发现更多内容

云桌面系统如何使用?云桌面的优势有哪些?

青椒云云电脑

云桌面 云桌面解决方案 云桌面系统

阿里云数据库MongoDB版助力掌阅平滑上云,撬动数据红利

极客天地

少写代码,用更便捷的方式开发程序

代码生成器研究

前端又出新轮子Nue.js,但还是低代码更香!

伤感汤姆布利柏

前端 低代码 前端框架 极简主义 nue

手把手教你使用 RisingWave 流数据库

吴英骏

分布式 rust 流处理 物化视图 数据库设计流程

低代码开发平台有什么优势?

代码生成器研究

如何降低代码的复杂度?

代码生成器研究

如何降低代码的复杂度?

代码生成器研究

Mural在线白板最全解析!Mural功能|发展历程|替代软件推荐!

彭宏豪95

科技 在线白板 办公软件 在线协作 效率软件

一种典型的负载均衡解决方案

极客罗杰

《21 天技术人写作行动营》--工作后最有成就感的一件事

IT蜗壳-Tango

为什么说编程是新时代必学的技能?

代码生成器研究

5 种主要的云电脑解决方案 - 不同之处

青椒云云电脑

云桌面 云电脑 云桌面解决方案

Last Week in Milvus

Zilliz

非结构化数据 Milvus Zilliz AIGC

工作以来最有成就感的事(深度思考)

Java 工程师蔡姬

21 天技术人写作行动营 #个人总结 #工作总结 #最有成就感的事 #职场思考

微信小程序 WXSS 是如何编译的?

FN0

小程序 小程序容器

直播预告 | 降本增效持续深化,如何找准 FinOps 关键着力点?

小红书技术REDtech

云原生 成本优化 FinOps

SQL 数据库语句- 创建和管理数据库

小万哥

MySQL 数据库 程序员 sql 后端开发

您距离一个成熟安全的 DevOps 平台,只差一个迁移

极狐GitLab

DevOps gitlab Atlassian Gartner Bamboo

每日一题:LeetCode-322. 零钱兑换

Geek_4z9ami

面试 算法 LeetCode 动态规划 贪心算法

低代码开发平台有什么优势?

代码生成器研究

当我跑越野时,我在想为什么

escray

技术人写作 21 天技术人写作行动营 21 天

HashMap超全源码详解(JDK1.8)

是月月啊2023

Java 面试题

软件测试/人工智能|Python算术运算符:入门指南

霍格沃兹测试开发学社

青椒云云桌面—低配电脑秒变高性能设计神器

青椒云云电脑

桌面云 云桌面 云桌面系统

还记得当初自己为什么选择计算机?

代码生成器研究

云桌面是什么?好用的云桌面推荐?

青椒云云电脑

云桌面 云桌面解决方案

行业首家!百度通过DCMM 4级乙方云服务商最高认证,数据管理能力行业领先

百度安全

只要你想,你就能找到一种方法

学渣汪在央企打怪升级

2023,“科技无障碍”不谈价值观

脑极体

AI

深度学习在高德ETA应用的探索与实践_AI&大模型_高德技术_InfoQ精选文章