写点什么

供热公司如何实现负荷预测与智能调度?看云和机器学习如何提供技术支撑

  • 2021-03-19
  • 本文字数:2529 字

    阅读完需:约 8 分钟

供热公司如何实现负荷预测与智能调度?看云和机器学习如何提供技术支撑

“通过使用亚马逊云科技,我们帮助石家庄一个 18 万平方米的小区,进行云端管理调控供热,在保证温度舒适的情况下最终实现节热 44%,第一年节能费用 62 万元。”

——北京智信远景软件技术有限公司 技术总监 张选潮


关于智信远景

北京智信远景软件技术有限公司(以下简称“智信远景”)是一家以降低社会综合成本为发展使命,在城市能源领域应用智慧物联网技术,助力产业优化,改善城市生态的高新科技企业。其主要面向供热运营企业,提供供热管网系统运行监测、安全保障、智慧调度的云服务解决方案。


智信远景推出的揽月云平台是一个针对供热企业和热用户提供智慧供热、智慧用热的 SaaS 服务云平台。平台基于运营商稳定可靠的 NB-IoT 网络,为供热管网中的各种工业设备赋能,是一个连接供热管网所有设备,连接所有运维人员、管理人员、暖通专家、决策者的智慧大系统。目前,揽月云平台面向城市集中供热企业的应用中接入 2,000 多个换热站,覆盖供热面积 1.2 亿平方米左右,累计节能约 4,000 万千瓦时,折合燃煤 50,000 吨。


面临的挑战

中国的城镇供热行业集中在北方,主要是集中供热业态,目前 90%供暖都是通过水暖的方式进行消费,以水为载体,将供热公司生产的热沿着热力管网输送至各个居住小区,而在小区内建设独立的二次网循环系统,通过换热机组将热力主管网的热交换至二次网,通过二次网在住宅中的循环散热,保证住户室内在冬季的温暖舒适,从而将热源生产的热消费掉。


但传统供热系统采用粗放式的管理方法,平均供给,很多时候无法根据房屋朝向、天气温度、住户面积等因素进行科学调节,往往靠人的经验调节相应阀门,这就会出现屋内过热或温度较低的情况,造成大量的能源浪费。供热行业的信息化变革已经是发展趋势,目前供热公司信息化的业务支撑系统主要指针对每个小区的换热机组设备,进行自动化控制及无人值守,做一些与天气因素相关的策略控制。


但面向未来,真正实现精细化管理,做到科学负荷预测则是下一步目标。供热具有时延性,影响因素非常多,要做到真正按需供热,则需要大量末端设备的数据来支撑预测算法,比如室内温度采集器、智能温度控制器、入户智能控制阀门装置等,而随着物联网设备数据量指数级的增长,在云上进行数据存储与计算已是必然。


对于智信远景来说,想要提升公司竞争力,为供热公司更好地提供解决方案必须依赖这两方面:云端的部署和人工智能的应用。在业务初期,智信远景希望减少在基础设施层面的投入,更聚焦于业务,因此上云势在必行。而在供热管网各种工业设备连接上云的过程中,只有快速排查出温度、压力和流量等传感器的异常数据,才能保证预测的准确性。


为什么选择亚马逊云科技

现在揽月云平台整体构建于亚马逊云科技,以实现更快速的数据挖掘,实现对换热站负荷的准确预测并指导现场调控。智信远景使用的亚马逊云科技服务包括 Amazon Simple Storage Service (Amazon S3) 、Amazon Elastic Compute Cloud(Amazon EC2)、Amazon EMRAmazon Elastic Container Registry(Amazon ECR)、Amazon Relational Database Service(Amazon RDS)、Amazon AthenaAmazon SageMaker等等。


亚马逊云科技弹性服务保证业务稳定,降低 IT 综合成本

目前揽月云平台的系统最外层网关程序以容器方式部署在 Amazon EC2 上,业务数据通过 Amazon S3 进行存储,并导入 Amazon EMR 及 Athena 进行数据批量处理和查询分析,批量处理后数据进入 Amazon RDS 进行缓存,最终返回给前端应用,将可视化数据展示给平台使用者。另外,借助 Amazon SageMaker 构建机器学习模型,实现对供热负荷的智能预测。

图 1 智信远景基于亚马逊云科技的系统架构示意图


供热行业一般在供暖开始后数据量大幅增加,随着供暖结束数据量逐步降低,期间增长率能够达到 200%-300%。针对其业务数据周期变化明显的特点,智信远景通过容器化部署,并结合服务注册发现机制,在供暖季开始前增加 Amazon EC2 的节点,部署更多的应用容器以应对增长的数据处理量,供暖季结束后逐步下线应用节点,实现弹性服务,节省 IT 成本。


通过机器学习快速实现供热负荷预测与智能调度

智信远景希望通过物联网设备连接上云,获取用户真实的需求,再通过机器学习调整最优的供给策略,达到节热节电的目的,因此需要在系统内加入供热负荷预测功能。而大量流式数据在收集过程中,必须保证真正有效、可靠的数据进入数据库。针对供热行业用到的很多工业设备出现异常数据影响预测准确性的问题,通过应用 Amazon SageMaker 基础模型,帮助智信远景实现了毛刺数据的识别和剔除,最终效果令人满意。


在使用 Amazon SageMaker 之前,智信远景原有专人负责搭建机器学习环境,但手写规则和方程式太过复杂,导致更多时间浪费在环境搭建上,留给业务分析的时间较少。在使用 Amazon SageMaker 开箱即用的功能后,用现成的模型直接构建,让企业能更专注于业务,节省资源。最终通过机器学习能力,实现对换热站负荷的准确预测与智能调控。


获得的收益

通过使用亚马逊云科技,使智信远景降低了部署中间件的复杂度和运维成本等,通过 Amazon EC2 性能监控功能,结合Amazon EC2 Spot 实例的使用使得 IT 综合成本进一步降低,比未接入云时的成本至少降低 30%。


另外,通过亚马逊云科技众多开箱即用的服务,智信远景将更多精力投入到核心的业务研发中,再结合 CI/CD 的应用,将产品功能发布周期由 3 个月降低至 1 个月。通过 Amazon SageMaker 实现机器学习模型快速构建,保证对换热站负荷的准确预测,帮助智信远景扩展了业务能力,提升其产品在市场上的竞争力。


目前有 16 家大规模集中供热公司、20 余家小区物业的二次网在使用智信远景的揽月云平台。位于石家庄的一个 18 万平方米的小区,拥有住户 1,500 家,智信远景帮助其进行云端管理调控供热,在保证温度舒适的情况下实现节热 44%,第一年节约热费 57 万元,电费 5 万元,共计节能费用 62 万元。如果换算为燃煤,相当于减少 1,550 吨的二氧化碳排放量。


未来,智信远景将更多发挥 Amazon SageMaker 的优势,在负荷预测和智能调度上,将更多数据参数加入模型进行训练,比如住房户型、面积、光照以及阀门调整后温度变化的时间延迟、人的行为变化(住户人数变化、节假日是否需要供热)等等。同时,针对供热行业,智信远景预测,物联网边缘设备的应用智能以及云端 AI 的应用一定会成为趋势,未来也将与亚马逊云科技继续进行更深的合作创新。

2021-03-19 19:073098

评论

发布
暂无评论
发现更多内容

StarkNet新手入门教程:教你用bitget 钱包入门

股市老人

无参照模型预测技术:UI自动化测试的新思路与应用

测吧(北京)科技有限公司

测试

15款顶级Bug管理工具全面评测

爱吃小舅的鱼

缺陷管理 bug管理 缺陷管理工具

Shopify 性能优化探索与落地

飞书深诺技术团队

性能优化 前端 建站 Shopify

简单、透明、安全、高度集成!龙蜥可信 SBOM 能力探索与实践

OpenAnolis小助手

开源 安全 操作系统 龙蜥社区 SBOM

互联网时代下体育直播平台的四大发展机遇与盈利创新

软件开发-梦幻运营部

融合低代码平台,实现政企业务快速高效加载

鲸品堂

低代码 企业号 3 月 PK 榜

搭个ChatGPT算法模型,离Java程序员有多远?

京东科技开发者

【干货】鞋服品牌商品部如何制定合理的售罄目标

第七在线

GreptimeDB v0.7 发布 — 全面支持云原生监控场景

Greptime 格睿科技

数据库 开源 云原生 版本 时序数据

最新推荐!2024年支持私有化的文档管理系统大盘点

爱吃小舅的鱼

文档管理 企业文档管理工具 文档管理软件

喜报|3DCAT成为国内首批适配Vision Pro内容开发者

3DCAT实时渲染

实时云渲染

小程序管理平台,企业研发效能提升利器

FinFish

小程序管理平台 小程序管理 小程序开发平台

深度学习驱动的遍历动作推荐:提高UI自动化测试效率的创新方法

测吧(北京)科技有限公司

测试

语义化与自动化——第三代指标平台两大核心能力详解(内含Q&A)

Aloudata

ETL 指标

和鲸科技受邀参与湖南省气象信息中心开展人工智能研究型业务支撑平台学术交流

ModelWhale

人工智能 机器学习 大数据 气象 地球科学

【鸿蒙开发】在ArkTS线程中通过napi创建的C++线程返回处理结果

贺公子之数据科学与艺术

上云还是下云,最大挑战是什么?对话章文嵩、毕玄、王小瑞

AutoMQ

阿里云 云原生 上云 云上架构

Starknet 最好的钱包是什么?

BlockChain先知

NFTScan :什么是 ERC-404?深入解读 NFT 协议的未来

NFT Research

ERC20 NFT ERC721 NFTScan

加密货币牛市会持续多久?

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

架构设计常见原则

凌晞

架构设计 架构设计原则

活动报名|AutoMQ x 阿里云云原生创新论坛(2024.03.09)见证“新一代云原生 Kafka ”重磅发布!

AutoMQ

kafka 阿里云 云原生 论坛

安全SCDN有什么效果

德迅云安全杨德俊

软件测试学习笔记丨JMeter性能测试工具 - 参数化介绍

测试人

软件测试

面试官:说说微服务灰度发布的底层实现?

王磊

Java 面试题

2024上海国际智能机器人展览会

AIOTE智博会

工业机器人展会 机器人展

【教程】uni-app iOS打包解决profile文件与私钥证书不匹配问题

LLM 大模型框架 LangChain 可观测性最佳实践

观测云

LLM #LangChain

ChatGPT 新增朗读功能;微软 Win11 鼠标悬停自动打开 Copilot 丨 RTE 开发者日报 Vol.158

声网

供热公司如何实现负荷预测与智能调度?看云和机器学习如何提供技术支撑_AI&大模型_王利莹_InfoQ精选文章