写点什么

谷歌最新 Imagen AI 在文本至图像生成方面优于 DALL-E

作者:Anthony Alford

  • 2022-06-29
  • 本文字数:1648 字

    阅读完需:约 5 分钟

谷歌最新Imagen AI在文本至图像生成方面优于DALL-E

来自谷歌大脑团队的研究人员发布了Imagen,这是一个文本至图像的 AI 模型,它能够通过给定的文本描述生成该场景下逼真的图像。Imagen 在 COCO 基准上的表现要优于DALL-E 2,并且与很多类似的模型不同,它只对文本数据进行了预训练。


发布在 arXiv 上的论文描述了该模型和多个实验。Imagen 使用 Transformer 语言模型将输入的文本转换成一个嵌入式向量的序列。然后,连续的三个扩散模型(diffusion model)会将这些嵌入式的向量转换成 1024x1024 像素的图片。作为其成果的一部分,该团队开发了名为U-Net的改进型扩散模型,以及适用于文本至图像模型的新基准套件 DrawBench。按照 COCO 基准,Imagen 的 zero-shot FID得到了 7.27 分,超过了之前表现最好的 DALL-E 2 模型。研究人员还讨论了其工作潜在的社会影响,指出:


我们开发 Imagen 的主要目标是推进生成方法(generative method)的研究,使用文本到图像的合成作为一个测试平台。尽管生成方法的终端用户在很大程度上不在这个范围之内,但是我们意识到该研究的潜在下游应用是多种多样的,并且可能会以很复杂的方式影响社会……在未来的工作中,我们将会探索一个负责任的外部化框架,以平衡外部审计的价值和不受限制的开放访问的风险。


近年来,一些研究人员已经在探索训练多模式(multimodal)的 AI 模型,也就是在不同类型的数据上操作系统,比如文本和图像。在 2021 年,OpenAI 发布了CLIP,这是一个深度学习模型,能够将文本和图像映射到相同的嵌入空间中,让用户判断文本描述是否与给定的图像匹配。该模型在很多计算机视觉任务中被证明是有效的,OpenAI 还用它创建了DALL-E模型,它能够通过文本描述生成逼真的图像。CLIP 以及类似的模型都是在图像-文本组合的数据集上进行训练,这些数据都是从互联网上搜集而来,类似于 InfoQ 今年早些时候报道的LAION-5B数据集。


谷歌团队没有使用图像-文本数据集来训练 Imagen,而是简单地使用了“现成的”文本编码器T5,将输入文本转换成嵌入式向量。为了将嵌入式向量转换成图像,Imagen 使用了一系列的扩散模型。这些用于图像生成的 AI 模型使用了迭代的去噪过程,将 Gaussian 噪音转换成数据分布中的样本,在该情况下,也就是图像。去噪的条件是一些输入。在第一个扩散模型中,条件就是输入文本的嵌入式向量,该模型的输出是一个 64x64 像素的图像。该图像经过两个“超级分辨率”扩散模型的向上采样,将分辨率提升到了 1024x1024。对于这些模型,谷歌开发了一个新的深度学习架构,叫做 Efficient U-Net,它比以前的 U-Net 实现 “更简单,收敛更快,内存效率更高”。



“一只可爱的柯基犬住在用寿司做成的房子里”。图片来源:https://imagen.research.google


除了在 COCO 校验集上评估 Imagen 之外,研究人员还开发了一个新的图像生成基准,即 DrawBench。该基准由一系列文本提示组成,“旨在探测模型的不同语义属性”,包括组成、基数(cardinality)和空间关系。DrawBench 使用人类评估员比较了两种不同的模型。首先,每个模型根据提示生成图像。然后,评估人员比较这两个模型的结果,指出哪个模型产生的图像更好。借助 DrawBench,谷歌大脑团队将 Imagen 与 DALL-E 2 以及其他三个类似的模型进行了评估。团队发现,与其他模型相比,评委们“非常”喜欢 Imagen 生成的图像。


在 Twitter 上,谷歌的产品经理 Sharon Zhou讨论了这项成果,她指出:


一如既往,[结论]是我们需要不断扩大[大型语言模型]的规模


在另一个主题推文中,谷歌大脑团队的负责人 Douglas Eck 发布了一系列由Imagen生成的图像,这些图像都来自于同一个提示信息的不同变化形式,Eck 通过添加词语来调整图像的风格、亮度和其他方面。在Imagen项目的网站上还可以找到其他几个由 Imagen 所生成图像的样例。


作者简介:

Anthony 是 Genesys 的开发总监,他从事与客户体验相关的多个 AI 和 ML 项目。他在设计和构建可扩展软件方面有着超过 20 年的经验。Anthony 拥有电子工程博士学位,专业是智能机器人软件,曾在人与人工智能交互和 SaaS 业务优化的预测分析领域研究过各种问题。


原文链接:

Google's New Imagen AI Outperforms DALL-E on Text-to-Image Generation Benchmarks

2022-06-29 09:006828

评论

发布
暂无评论
发现更多内容

程序员 AI 助手来了,蚂蚁正式开源代码大模型CodeFuse

TRaaS

支付宝小程序 开源 前端

Mac电脑版Pd虚拟机18通用 Parallels Desktop 18密钥工具

胖墩儿不胖y

虚拟机 Mac软件 Parallels Desktop 虚拟机

YARN 资源调度器 CapacityScheduler 原理

冰心的小屋

YARN 资源调度 CapacityScheduler

华为云Classroom赋能--面向高校学生的Toolkit系列实践培训

华为云PaaS服务小智

云计算 软件开发 华为云 开发者插件

为什么使用图进行关联运算比表Join更具吸引力?

TuGraphAnalytics

sql join 图计算 tugraph no-SQL

ChatGPT:GPU驱动的智能对话系统典范

Finovy Cloud

gpu ChatGPT

首家!亚信科技AntDB数据库完成中国信通院数据库迁移工具专项测试

亚信AntDB数据库

AntDB 国产数据库 AntDB数据库

OpenHarmony社区运营报告(2023年8月)

OpenHarmony开发者

OpenHarmony

山东布谷科技直播app源码,QUIC协议:改善性能与安全性

山东布谷科技

性能优化 网络协议 安全性 QUIC 直播APP源码

限时!低至0.028元/核时,火山引擎边缘渲染全面降价

火山引擎边缘云

视频 渲染 边缘云 渲染技术

1分钟实现Redis数据迁移任务

NineData

redis 复制 迁移 不停机发布 NineData

对线面试官 - 硬件级别之再谈Volatile关键字的可见性

派大星

Java 面试题 volatile原理

OpenHarmony创新赛|赋能直播第三期

OpenHarmony开发者

OpenHarmony

PopChar for mac(特别字符输入工具) 9.5永久激活版

mac

苹果mac Windows软件 PopChar 特别字符输入工具

开源社区赋能,Walrus 用户体验再升级

SEAL安全

开源 开源工具 Walrus 企业号9月PK榜

对话在行人|中亿丰(下):数智化推动建筑行业高质量发展

用友BIP

2023全球商业创新大会 对话在行人

大模型加持下的AI,推动智能化普及应用

用友BIP

2023全球商业创新大会 升级数智化底座

Spring 中三种 BeanName 生成器!

江南一点雨

Java spring

跨链代币开发:架起区块链未来的桥梁

区块链软件开发推广运营

交易所开发 数字藏品开发 dapp开发 区块链开发 NFT开发

AI文本创作在百度App发文的实践

百度Geek说

人工智能 文心一言 企业号9月PK榜 AI辅助创作 智能生成文案

软件测试丨突破传统,革新测试:ChatGpt指引下的测试方案编写

测试人

人工智能 程序员 软件测试 测试方案 ChatGPT

下一代云越来越智能

人称T客

LangChain系列-03. LLM聊天模型

无人之路

大模型 LLM #LangChain

谷歌最新Imagen AI在文本至图像生成方面优于DALL-E_AI&大模型_InfoQ精选文章