写点什么

对话业界大咖:人工智能高速发展背后的原因到底是什么?

  • 2020-04-07
  • 本文字数:3497 字

    阅读完需:约 11 分钟

对话业界大咖:人工智能高速发展背后的原因到底是什么?

面向未来企业进行数字化转型,积极拥抱万物互联、万物智能的新时代已经成为众多企业的共识。


但是谈到目前最为火爆的人工智能技术在工业界的应用,依然有很多不一样的观点。那么人工智能技术在工业界应用的时机是否成熟,工业界在应用人工智能时又要遵循什么原则呢?


近日,小编有幸采访到美国罗切斯特大学(University of Rochester,USA)计算机科学系的罗杰波教授。接下来,让小编带大家一起来了解下人工智能高速发展背后的原因以及在工业界应用的建议吧~



美国罗切斯特大学(University of Rochester,USA)计算机科学系的罗杰波教授


罗杰波教授简介:


罗杰波教授是 IEEE、SPIE 和 IAPR 等国际著名学会会士(Fellow),研究涉及图像处理、计算机视觉、自然语言理解,机器学习、数据挖掘等多个前沿领域。罗教授曾在“柯达实验室”从事研究工作多年,并担任首席科学家。罗教授还是多个国际顶级会议的主席,并在多个国际顶尖学术期刊担任职务,发表超过 350 篇学术论文,持有超过 90 项美国专利。近年来,罗杰波教授在社交多媒体研究及其社会应用中做出了开创性贡献。


首先,您能结合自身的研究谈谈,为什么近些年 AI 领域能获得如此迅猛的发展吗? 是哪些关键要素促成了这样一个可喜的结果?


罗教授:


为什么 AI 这两年这么火,我认为有四个原因。


首先,是 Sensor Technology 的发展带动了图像采集的便利,使得图像处理的前期资源有了保证。


其次,是 Big Data 数据量上来了,可以用数据驱动模型来做这个事情。从前我们做这些事情是模型驱动的,不是数据驱动的。很多人都能认识到,我们有了很多数据,但是计算力不够也做不到。


第三,为 GPU、云计算领域技术的快速发展,促进了计算力的明显提升。在这样的时代背景下,人人都可以做这件事。我们早年开始做图像处理的时候内存就只有几兆,图像就只能一点点读,很多事情做不了,但是现在都可以做了。


第四,就是人力。有人说,人工智能是有多少人工就有多少智能,这个事情其实一点都不假。一方面,研究人员多了,比如人脸检测,很多人在做,数据集是开放的,大家都可以不停地刷数据。另一方面,就是标数据的人力数量的提升。比如,你有个想法要做一个手势识别,会有几十个人专门来标数据,一星期就标出很多数据,然后拿去训练,就可以很快实现。


我认为,是以上四个原因让人工智能飞速发展。上述原因主要是基于计算机视觉这个领域来分析,其实语音也是一样的,都是先标数据,然后经过大量的机器训练,最后到功能的实现。


您认为 AI 技术已经相对成熟,可以在工业界逐步走向商用了吗?


罗教授:


我先讲视觉领域,无论看国内还是美国,国内其实更明显,真正成熟的技术主要是围绕从检测到识别的人脸相关技术。为什么成熟呢?因为人脸技术虽然不是刚体,但是接近于刚体,变化比较小,不同的人种差异不大,即使带有表情也都可以识别。另一个我觉得比较成熟的 AI 技术是车辆识别,车辆虽然每年在更新,其实外观都差的不多。


因为有了斯坦福大学公开的图像识别数据集 ImageNet,才有了深度学习,其实一般物体的检测准确率已经大大提升。拿椅子举例,我们当年认为椅子是不可解的,是找不出来的。因为椅子不是一个视觉概念而是一个功能概念(人可以坐),椅子的形状材质各种各样,视觉上变数太大。现在为什么可以找出来呢,还是因为数据量大了,把所有椅子,从各种角度看的椅子都拿来训练,最终识别率就提升了。


工业界在应用 AI 时有几点要注意。关于 AI 技术从工业界到商用,我有一个 70-90-99.5 的经验公式。分为三个阶段:


第一个阶段的门槛是 70%。如果一个技术方向在实验室,在适量的数据集上能达到 70%准确,那么证明这个方向是可行的。


第二阶段是走出实验室到真实世界,用真实世界的数据把它推向更高的层次,目标是 90%。当准确性达到 90%大概率而且不出错时,可以去找一个垂直的场景,这个场景需要达到能够预估到剩下 10%的错误不是灾难性的,或者让它在有限的范围内准确性高于 90%,这样我们的产品就可以推广上市。


第三阶段的门槛我认为是 99.5%。我认为 100%可能性不大,但让机器做到 99.5%,就能达到超过人的程度,这个时候说明它已经走向产业化了。


其实到了 90%的时候就应该开始做,不要等到 99.5%再做。你在做的同时可以考虑和你应用有关的东西,同时学术界也会继续把它往前推,等你把这边工作做好了,学术界的研究也跟上来了。


您认为工业界在应用 AI 技术时,除了 AI 自身还需要关注哪些问题,或者需要避免哪些误区?


罗教授:


谈到误区有几个事情我想说明一下。我以前在柯达的时候,他们有一个做事的理念:事情没有做到完美就不能拿到市场上去。其实 AI 用这种理念来做是会受到影响的,我们到了 90%就可以推出去,这样我们就能在实践中找到缺陷在哪里。另外,是目前在中国看到的一个误区,事情还没有谱,就去大肆宣传,就去卖理念,最后造成大家很失望。因为之前 AI 好几次都是这样的,大家都认为 AI 要改变人类、改变生活,结果没有付诸行动实现,信心就撤掉了。要警惕这种过度承诺,要做到适度,既不要太激进也不要太保守,更不能被人忽悠。


还有一个注意要点跟安全、隐私有关,其中包括视觉和大数据用户画像,这个在一定程度上涉及了人的隐私边界。安全和隐私,企业还是要注意,哪些能用哪些不能用,要做到心中有数。用的时候,有一个方式就是把个体信息脱敏,聚合到群体信息中,这样没有针对某一个人,但是实际上是了解了一类人的行为,进而洞察出有价值的信息。


前些年,工业界大数据技术非常火爆,最近 AI 又在兴起,您怎么理解工业大数据和 AI 的关系?


罗教授:


这个事情我是比较有发言权,我发现有一些公司,他们经常把大数据和 AI 割裂开,或者成立两个部门管理,我认为这个做法是错误的。大数据如果不用 AI,大数据的价值是出不来的,因为数据多了以后,人是没有能力去分析这么多数据的,必须靠 AI。用 AI 去发现人不容易一眼就能看出来的东西,一个是数据量大,维度高的时候,人是没法想象的,这个东西只能靠 AI 来做,所以我认为大数据离不开 AI。反过来 AI 也离不开大数据,特别是现在数据驱动的一些模型,没有大数据寸步难行。


我不是说,AI 离开大数据什么都不能干。因为 AI 现在更多强调的也是如何运用数据来创造价值,AI 还是非常需要大数据的。我认为在学术界只想研究大数据或只想研究 AI 是可行的,但是在工业界两边都要看,不能隔绝开。而且只有当两个放在一起的时候,你才能实现价值的最大化。


最后请您判断一下,未来几年 AI 技术的主要发展方向和趋势。


罗教授:


我先讲一个我不是太熟悉的方向,我觉得硬件上肯定是会继续发展的。NVIDIA 现在其实也在推动一些把计算从云端往移动端或边缘端转移的事情,也有一些移动的芯片,我觉得端与云的协同会继续发展,这是一种趋势。


朱松纯的那篇《浅谈人工智能》内容很好,讲的就是大 AI。最早 AI 是一个领域方向,后来细分为视觉、语音、文本理解、机器学习、机器人等等若干领域。这是因为每个小领域的人认为,我们其实可以在这个领域里面率先取得突破。


现在大家在各自领域发展一段时间,已经取得了一些成绩,分享的意识就提高了,希望得到更多的关注与聆听。实际上,应该是 AI 所有的子领域在一起汇合,才会产生聚合效应。所谓“大 AI”,就是各个领域的成果互通,经验共享,这非常有意义。


拿机器人举例分析,实际上人和机器人最快捷的感知就是视觉,但是要给它命令需要语言,用语言去驱动它,而不是按个什么键。AI 有一个领域被大家遗忘了,Scheduling Planning(调度与规划)就是怎么去做一个计划。


Scheduling Planning 的典范就是导航 GPS,我要从 A 去 B 有这么多条路,我该怎么找出最佳的路线,这就是规划的问题,搜索在有一个目标函数的情况下找出最佳的结果。目前这个变成冷门了,但实际上,在机器人这个领域里面是绝对有用的。机器人要做一个事情,它在想我的任务是从这搬到那,我怎么去越过这些障碍,这就是 Schedule Planning 的问题,它得知道自己的位置,然后把这个环境映射到地图中。


机器人这个应用实际上会涉及到视觉、语音,然后你给他发号指令,并且不局限于简单的指令,NLP 也得有,它自己还得有 Schedule Planning ,而且好多东西都要机器去学习,所以在这个例子里, AI 最后起作用的是,AI 多分支整合产生的最大效应,这个我认为是接下来几年的发展方向。


实际上,特别是从工业界的角度,把这些最新的 AI 技术结合起来然后在一个场景下就可以爆发出最大的效应。客户不看你用的什么方法,无论是视觉还是语音,每一个领域都不是百分百对的,这个时候要采用多模态、多方式的思路,会让系统更加稳健。


本文转载自华为云产品与解决方案公众号。


原文链接:https://mp.weixin.qq.com/s/aZI5L28Z6mzenALerWKcLg


2020-04-07 17:191287

评论

发布
暂无评论
发现更多内容

激活SBOM内生价值 推动供应链体系建设健康有序|2023开放原子全球开源峰会软件物料清单(SBOM)分论坛成功举办

开放原子开源基金会

开源 开放原子全球开源峰会 开放原子 软件物料清单(SBOM)

2023开放原子全球开源峰会OpenCloudOS社区年会顺利举行

开放原子开源基金会

开源 开放原子 OpenCloudOS社区

NestJs 管道(Pipe)

小鑫同学

typescript 后端 nestjs 6 月 优质更文活动

这项国家级安全检测,腾讯云慧眼安全能力再获认可!

牵着蜗牛去散步

人工智能 腾讯云 网络安全 腾讯云AI 腾讯云慧眼人脸核身

华为云数据库GaussDB:数字化转型和可持续发展的更优选择

YG科技

聚焦企业实践一线与个体职业成长|2023开放原子全球开源峰会OSPO分论坛成功举办

开放原子开源基金会

开源 开放原子全球开源峰会 OSPO 开放原子

SUSE:强化零信任、自动化和易用性,筑牢云原生安全防线

Rancher

k8s security Kubernets

中兴交换机如何配置?有哪些常用的配置命令,本文值得收藏!

wljslmz

6 月 优质更文活动

DEVONthink Pro 3 for Mac:Mac强大的文档管理工具

背包客

macos 文档管理软件 Mac软件 DEVONthink Pro DEVONthink

关于 SAP ABAP 字符变量和字符串变量字符个数的一个知识点,和一个血案

汪子熙

后台开发 abap Netweaver 字符串处理 6 月 优质更文活动

WWDC2023 Session系列:探索XCode15新特性 | 京东云技术团队

京东科技开发者

xcode wwdc session WWDC 2023 企业号 6 月 PK 榜

Nautilus Chain测试网迎阶段性里程碑,模块化区块链拉开新序幕

西柚子

深入理解 ABAP Reference 变量

汪子熙

SAP abap Netweaver 6 月 优质更文活动

JavaOrm框架-基础文档

demo123567

Java ORM 自主研发

阿里资深专家撰写出的Nginx底层与源码分析手册,GitHub已爆赞

互联网架构师小马

nginx

ChatGPT+Mermaid自然语言流程图形化产出小试 | 京东云技术团队

京东科技开发者

流程图 ChatGPT 企业号 6 月 PK 榜 Mermaid

深度学习应用篇-元学习[16]:基于模型的元学习-Learning to Learn优化策略、Meta-Learner LSTM

汀丶人工智能

人工智能 深度学习 元学习 元强化学习 6 月 优质更文活动

STM32L0 ADC使用HAL库关于校准问题的说明

矜辰所致

STM32L051 ADC 6 月 优质更文活动

软件测试/测试开发丨Python 闭包函数&装饰器

测试人

Python 程序员 软件测试 装饰器 函数

华为云数据库GaussDB:给世界一个更优选择

YG科技

Spring的核心概念:Spring基础框架及技术生态

互联网架构师小马

Java spring 框架

飞桨携手第二届GitLink开源夏令营,邀你参与顶尖开源项目!

飞桨PaddlePaddle

人工智能 百度 飞桨

VSD Viewer for Mac:Visio绘图文件阅读器

背包客

macos Mac软件 Visio文件查看工具 Visio Viewer for Mac VSD Viewer

深度学习应用篇-元学习[15]:基于度量的元学习:SNAIL、RN、PN、MN

汀丶人工智能

人工智能 深度学习 元学习 元强化学习 6 月 优质更文活动

【C/C++】extern 的一些注意事项

sidiot

c 6 月 优质更文活动

【Netty】「萌新入门」(三)ChannelFuture 与 CloseFuture

sidiot

Java 后端 Netty 6 月 优质更文活动

Sentinel适配Reactor+WebFlux框架的实现原理

互联网架构师小马

Java reactor sentinel WebFlux

Alibaba官方上线!SpringBoot+SpringCloud全彩指南

互联网架构师小马

Java 微服务 Spring Cloud Spring Boot

华为云数据库GaussDB:数字化转型的可信之选

YG科技

重拾梦想!语音交友源码平台搭建技术知识:在线KTV功能的实现

山东布谷科技

软件开发 在线KTV 源码搭建 语音交友源码

混沌演练状态下,如何降低应用的MTTR(平均恢复时间) | 京东云技术团队

京东科技开发者

混沌工程 系统安全 MTTR 企业号 6 月 PK 榜

对话业界大咖:人工智能高速发展背后的原因到底是什么?_服务革新_华为云产品与解决方案_InfoQ精选文章