写点什么

优酷提出基于图执行引擎的算法服务框架,系统架构概览

  • 2020-06-10
  • 本文字数:2066 字

    阅读完需:约 7 分钟

优酷提出基于图执行引擎的算法服务框架,系统架构概览

背景

在阿里的业务中,有广泛的算法应用场景,也沉淀了相关的算法应用平台和工具:基础的算法引擎部分,有成熟的召回和打分预估引擎、在线实时特征服务;推荐算法应用领域,有算法实验平台 TPP(源于淘宝个性化平台),提供 Serverless 形式的算法实验平台,包括资源弹性伸缩、实验能力(代码在线发布、AB 分流、动态配置)、监控管理(完善的监控报警、流控、降级)等能力,是算法在线应用的基石。


但在实际的算法应用业务中(如优酷推荐业务),算法应用场景众多(100+活跃场景),需求灵活多变,如果没有一套通用业务框架抽象出通用和定制化的部分来提高算法组件的复用度,会严重拖慢算法实验的节奏。基于图引擎的算法服务框架就是为了封装这样一套框架,抽象算法在线服务的通用算子,支持运行时算法流程的装配,提升算法服务场景搭建的效率。

设计概览

算法推荐典型的在线处理执行流程是:多路粗排召回、合并、预估、打散策略。推荐服务根据用户的设备 ID 等其他必要信息进行多路并行召回,在召回引擎中粗排后,经过必要的过滤处理,截取一定数量的内容调用 Rank 引擎进行精排预估,预估结果经过一系列算法策略处理后输出最终结果。


整个过程中召回、合并、预估、打散等业务处理既有并行处理也有串行处理,可以根据业务需要灵活配置。基于图的推荐业务执行引擎是运行在算法实验平台上的执行引擎,它的典型处理流程是:在 AB 实验分桶上,通过图形化交互页面配置数据源、业务算子的执行依赖关系,并配置每个算子的运行时动态参数。


系统总体结构如下图所示,共分成五个主要模块(DAG 图执行引擎、图执行算子元件、图形化配置 DAG、图配置动态解析、Debug 调试)。



图:系统总体架构


当推荐请求到达时,引擎读取 AB 参数,根据参数上配置的算子信息,通过反射机制创建算子实例,动态组装成可运行的 DAG。根据条件分支配置,动态裁剪运行时的 DAG 实例,根据图运行占用最大线程数配置,动态调整线程复用。算子通过算法实验平台的底层协程池并行运行。

关键模块

1 图执行算子元件

1) 数据集

在 DAG 图中流转的数据统一封装为 DataSet 数据集,数据集是结构化多行二维数据的封装,在数据集上封装便利的基础算子操作。


数据集上一系列处理操作基于 Java 的 Stream API 来处理,以此达到集合处理的最好性能,将非 Action 操作延迟到最后数据处理时运行。

2) 数据源

将能够返回数据或者数据交互的二方服务封装为通用数据源,所有业务算子围绕数据源的数据进行业务开发,通用数据源包括召回数据集、在线算法需要的辅助数据集(如存放在 KV 内存存储的旁路召回数据、特征等数据)、打分预估结果集、内存数据源等。


数据源的封装通过动态参数配置方式实现通用性和可扩展性。数据查询只需要修改配置即可实现数据获取,不需要开发代码。

3) 基础算子

在 DataSet 数据集上封装的基本操作作为基础算子,比如 Join、Union、Filter、Sort、Map、Collect 等流式操作。在 DataSet 上重新封装 Stream 相关 API,便于对 DataSet 进行流式处理。

4) 业务算子

召回、预估、合并、打散、过滤等业务操作封装为业务算子,在业务算子中可以查询数据源,返回数据集后通过基础算子计算得到结果。

2 图形化配置 DAG

3 配置动态解析和优化

1)根据 AB 配置实时变更图执行结构

为了减少解析图结构的耗时,图引擎在运行时对图结构做了缓存,但在 AB 配置更新时需要实时反映到图引擎中,所以要根据图配置的哈希值校验的方式检测图配置是否更新,图结构变更后会重新创建引擎实例。

2)子图并行线程优化

在 DAG 执行时,所有算子都交给线程池异步运行,但是在大多数情况下子图可能是一个顺序执行图,不需要并行,不应该占用其他线程,所以在图执行时,动态根据依赖关系识别节点是否需要占用新线程运行。

3)条件分支动态裁剪

如果图结构中存在条件节点,会根据条件节点的动态结果裁剪后续图节点的运行。如果一个图节点的执行条件为否,后续单独依赖它的节点都不会运行,条件节点具备传递性。如果后续节点不单独依赖不运行的节点,则当前节点可运行。

4 DAG 图执行引擎

1)并发控制

通过图中依赖关系动态解析节点需要通过并行还是串行执行,在图中配置最大并发线程数来控制图的最大并发度。最大程度复用线程,减少线程切换带来的开销。

2)超时控制

通过整个图上配置超时时间来控制图的超时,根据业务粒度将子业务配置为子图,从而通过控制子图的超时时间来控制子业务的超时时间。

3)通过协程优化异步执行

DAG 运行依赖线程池运行,算法实验平台提供了基础线程池,并同时将线程池在 JVM 层面优化为协程,通过压测比对,普通线程池的性能要低于协程池的性能。

总结 &展望

基于图引擎的算法服务框架建设,通过抽象算法业务的通用组件,提供图形化流程编排工具和图执行引擎,实现了 0 代码、配置化支持算法业务需求。为快速的算法应用,不断提升用户的个性化服务打下了坚实基础。对推荐、搜索、广告等算法应用业务有参考价值。


接下来,为了进一步提升引擎性能,我们将在构图优化和引擎执行性能上做优化,在保持业务表达灵活简洁的同时,追求更优的执行性能。


作者介绍:阿里文娱高级专家 随方,阿里文娱开发专家 轩成


2020-06-10 11:163809

评论

发布
暂无评论
发现更多内容

ROMA集成关键技术:增量数据集成

华为云开发者联盟

云计算 后端 华为云 12 月 PK 榜

无代码是否能成为主流

间隔

任务管理轻松实现大规模设备管理控制——设备管理类

阿里云AIoT

运维 监控 云安全 消息中间件 储存

武汉前端培训学习靠不靠谱?

小谷哥

行业方案 | 新规落地,企业集团财务公司如何构建数智财务体系?

袋鼠云数栈

重磅 | 招商局集团、招商局港口荣获CGMA年度大奖——九科信息与百年招商局共同探索财务数智化转型之路

九科Ninetech

产品负责人 VS 产品经理

ShineScrum

产品经理 产品负责人

MatrixDB v4.5.0 重磅发布,全新推出 MARS2 存储引擎!

YMatrix 超融合数据库

数据库 存储引擎 超融合数据库 版本迭代 YMatrix

体验百度Java后端一面凉经,让我有了新的感悟

小小怪下士

Java 百度 程序员 面试

公司项目终于用上了插入式注解,真香!

Java永远的神

程序员 程序人生 项目 架构师 后端开发

Java: 在Excel中插入和提取图片

Geek_249eec

Java Excel 图片

大数据有没有必要参加培训?

小谷哥

学习web前端应该选择哪个培训机构?

小谷哥

2022年牛客网最新版大厂Java八股文面试题总结(覆盖所有面试题考点)

架构师之道

编程 程序员 java面试

StoneDB荣获"2022年度优秀开源技术团队" : 决心做好下一代MySQL高性能分析加速器

StoneDB

MySQL 开源 HTAP 数据库· StoneDB

AI作画技术实践第二期|用腾讯云智能图片融合优化AI绘画的效果

牵着蜗牛去散步

腾讯云 腾讯 AI作画 腾讯云智能 智能内容创作

Zebec正在以流支付的方式,推动加密支付走向主流

股市老人

我人傻了!新入职的同事三下五除二就搭建了一个简易版秒杀系统

程序员小毕

程序员 程序人生 后端 架构师 秒杀系统

柏睿数据完成阿里云PolarDB数据库产品生态集成认证

阿里云数据库开源

阿里云 polarDB PolarDB-X PolarDB-PG PolarDB for PostgreSQL

零基础去程序员培训机构靠不靠谱?

小谷哥

零基础学习前端开发培训机构怎么选

小谷哥

PCB工程师最实用的拼版案例合集请查收!

华秋PCB

PCB PCB设计 拼版

QSDK/ipq5018/2T2R/Bluetooth BT5.1 supporting QCN9074/industrial wifi6 module

wallysSK

QCN9074 ipq5018

云计算技术是基于互联网和网络的新技术

Finovy Cloud

云服务器 云技术 云渲染

数据治理:聊聊数据血缘!

用友BIP

LeaRun.net代码生成器 一键生成前后端代码

力软低代码开发平台

一名曾因线上P0故障导致月工资扣了10%的码农心得:如何在故障10分钟黄金时间快速排障

KINDLING

Java 运维 可观测性 线上故障 ebpf

面对复杂中国式报表,哪款BI商业智能工具适合你?

小偏执o

研发 Leader 怎样写出非研发也看得懂的年终总结?

思码逸研发效能

研发效能 年终总结

瓴羊Quick BI 权限管理:开拓数据分析效率和智能化水平的新高度

对不起该用户已成仙‖

优酷提出基于图执行引擎的算法服务框架,系统架构概览_AI&大模型_阿里巴巴文娱技术_InfoQ精选文章