写点什么

PostgreSQL 逻辑优化——整体架构介绍

  • 2016-09-18
  • 本文字数:4638 字

    阅读完需:约 15 分钟

编者按:InfoQ 开设新栏目“品味书香”,精选技术书籍的精彩章节,以及分享看完书留下的思考和收获,欢迎大家关注。本文节选自李浩著《 PostgreSQL 查询引擎源码技术探析》中的第4 章“查询逻辑优化”的第4 节“查询优化分析”。

4.4 查询优化分析

一棵完成 transform 和 rewrite 操作的查询树是否是一棵最优的查询树?如果不是,那么又该如何对该查询树进行优化?而优化所使用的策略正是本节要讨论的重点内容,而且优化部分也是整个查询引擎的难点。

子链接(SubLink)如何优化?子查询(SubQuery)又如何处理?对表达式(Expression)如何进行优化?如何寻找最优的查询计划(Cheapest Plan)?哪些因素会影响 JOIN 策略(Join Strategies)的选择,而这些策略又是什么?查询代价(Cost)又是如何估算的?何时需对查询计划进行物化(Plan Materialization)处理等一系列的问题。

在查询计划的优化过程中,对不同的语句类型有着不同的处理策略:

(1)对工具类语句(例如,DML、DDL 语句),不进行更进一步的优化处理。

(2)当语句为非工具语句时,PostgreSQL 使用 pg_plan_queries 对语句进行优化。

与前面一样,PostreSQL 也提供定制化优化引擎接口,我们可以使用自定义优化器 planner_hook,或者使用标准化优化器 standard_planner。

Pg_plan_queries 的函数原型如程序片段 4-15 所示。

程序片段 4-15 pg_plan_queries 的函数原型

复制代码
List *
pg_plan_queries(List *querytrees, int cursorOptions, ParamListInfo boundParams)
{
List *stmt_list = NIL;
ListCell *query_list;
foreach(query_list, querytrees)
{
Query query = (Query ) lfirst(query_list);
Node *stmt;
if (query->commandType == CMD_UTILITY) // 工具类语句
{
/* Utility commands have no plans. */
stmt = query->utilityStmt;
}
else // 非工具类语句,使用 pg_plan_query 完成优化工作
{
stmt = (Node *) pg_plan_query(query, cursorOptions, boundParams);
}
stmt_list = lappend(stmt_list, stmt);
}
return stmt_list;
}
PlannedStmt *
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
if (planner_hook)
result = (*planner_hook) (parse, cursorOptions, boundParams);
else
result = standard_planner(parse, cursorOptions, boundParams);
return result;
}

4.4.1 逻辑优化——整体架构介绍

在未使用第三方提供的优化器时,PostgreSQL 将 planner 函数作为优化的入口函数,并由函数 subquery_planner 来完成具体的优化操作。从图 4-1 中的 Call Stack 我们可以看出 planner 与 subquery_planner 之间的调用关系。

图 4-1 优化调用栈

函数以查询树作为输入参数,并以优化后语句作为返回值。

在 standard_planner 中,首先处理“DECLARE CURSOR stmt”形式的语句,即游标语句,并设置 tuple_fraction 值。那么 tuple_fraction 又是什么呢?

tuple_fraction 描述我们期望获取的元组的比例,0 代表我们需要获取所有的元组;当 tuple_faction∈(0,1) 时,表明我们需要从满足条件的元组中取出 tuple_faction 这么多比例的元组;当 tuple_faction∈[1,+∞) 时,表明我们将按照所指定的元组数进行检索,例如,LIMIT 语句中所指定的元组数。

完成对 tuple_faction 的设置后,进入后续优化流程,subquery_planner 的函数原型如程序片段 4-16 所示。

程序片段 4-16 standard_planner 的函数原型

复制代码
PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
PlannerGlobal *glob;
double tuple_fraction;
PlannerInfo *root;
Plan *top_plan;
ListCell *lp, *lr;
/* Cursor options may come from caller or from DECLARE CURSOR stmt */
if (parse->utilityStmt &&
IsA(parse->utilityStmt, DeclareCursorStmt))
cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
...
// 设置相关的 fraction 值
/* Determine what fraction of the plan is likely to be scanned */
if (cursorOptions & CURSOR_OPT_FAST_PLAN)
{
tuple_fraction = cursor_tuple_fraction;
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0;
else if (tuple_fraction <= 0.0)
tuple_fraction = 1e-10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
// 优化入口点
top_plan = subquery_planner(glob, parse, NULL,
false, tuple_fraction, &root);
if (cursorOptions & CURSOR_OPT_SCROLL)
{
if (!ExecSupportsBackwardScan(top_plan))
top_plan = materialize_finished_plan(top_plan);
}
...
Click and drag to move
}

这里也许读者会迷惑,为什么是 subquery_planner 呢?从名字上看该函数像是用来处理子查询,那么为什么用来作为整个查询语句优化的入口呢(Primary Entry Point)?

子查询语句作为查询语句的一部分,很大程度上与父查询具有相似的结构,同时两者在处理方式和方法上也存在着一定的相似性:子查询的处理流程可以在对其父查询的过程中使用。例如,本例中的子查询语句 SELECT sno FROM student WHERE student.classno = sub.classno,其处理方式与整个查询语句一样。因此,使用 subquery_planner 作为我们查询优化的入口,虽然从函数名上来看其似乎是用于子查询语句的处理。

由 gram.y 中给出的 SelectStmt 的定义可以看出,其中包括了诸如 WINDOWS、HAVING、ORDER BY、GROUP BY 等子句。那么 subquery_planner 函数似乎也应该有相应于这些语句的优化处理。就这点而言,subquery_planner 与原始语法树到查询树的转换所采取的处理方式相似。根据上述分析,我们可给出如程序片段 4-17 所示的 subquery_planner 的函数原型。

程序片段 4-17 subquery_planner 的函数原型

复制代码
Plan* subquery_planner (PlannerGlobal* global, Query* query, …)
{
process_cte (global, query);
process_sublink(global, query);
process_subqueries(global, query) ;
process_expression (query->targetlist, TARGET,…) ;
process_expression (query->returning, RETURNING,…) ;
process_quals_codition(query->jointree,…) ;
}

按照上述给出的原型,只要完成假定的 process_xxx 函数,就可以实现对查询语法树的优化工作。是不是觉得很简单?当然不是,原理很简单,但是理论与实际还有一定的距离。例如,如何处理查询中大量出现的子链接?如何对δ算子执行“下推”?如何选择索引?如何选择 JOIN 策略?这些都需要我们仔细处理。

PostgreSQL 给出的 subquery_planner 如程序片段 4-18 所示。

程序片段 4-18 subquery_planner 函数的实现代码

复制代码
Plan *
subquery_planner(PlannerGlobal *glob, Query *parse,
PlannerInfo *parent_root, bool hasRecursion,
double tuple_fraction, PlannerInfo **subroot)
{
int num_old_subplans = list_length(glob->subplans);
PlannerInfo *root;
/* Create a PlannerInfo data structure for this subquery */
root = makeNode(PlannerInfo);
root->hasRecursion = hasRecursion;
if (hasRecursion)
root->wt_param_id = SS_assign_special_param(root);
else
root->wt_param_id = -1;
root->non_recursive_plan = NULL;
if (parse->cteList)
SS_process_ctes(root);
if (parse->hasSubLinks)
pull_up_sublinks(root); // 子连接上提操作
inline_set_returning_functions(root);
parse->jointree = (FromExpr *)
pull_up_subqueries(root,(Node *) parse->jointree); // 子查询处理
if (parse->setOperations)
flatten_simple_union_all(root);
...
parse->targetList = (List *)
preprocess_expression(root,(Node *) parse->targetList,
EXPRKIND_TARGET);// 目标列处理
...
parse->returningList = (List *)
preprocess_expression(root,(Node *) parse->returningList,
EXPRKIND_TARGET);//returning 语句处理
preprocess_qual_conditions(root,(Node *) parse->jointree);// 处理条件语句
parse->havingQual = preprocess_expression(root, parse->havingQual,
EXPRKIND_QUAL);
foreach(l, parse->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(l);
/* partitionClause/orderClause are sort/group expressions */
wc->startOffset = preprocess_expression(root, wc->startOffset,
EXPRKIND_LIMIT);
wc->endOffset = preprocess_expression(root, wc->endOffset,
EXPRKIND_LIMIT);
}
parse->limitOffset = preprocess_expression(root, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(root, parse->limitCount,
EXPRKIND_LIMIT);
root->append_rel_list = (List *)
preprocess_expression(root, (Node *) root->append_rel_list,
EXPRKIND_APPINFO);
...
newHaving = NIL;
foreach(l, (List *) parse->havingQual)//having 子句优化处理
{
...
}
parse->havingQual = (Node *) newHaving;
...
return plan;
Click and drag to move
}

由 PostgreSQL 给出的实现可以看出,核心处理思想与我们讨论的相一致:依据类型对查询语句进行分类处理。

这里需要读者注意的一点就是查询计划的生成部分,PostgreSQL 将查询计划的生成也归入 subquery_planner 中,但为了方便问题的讨论,我们并未将查询计划的生成部分在 subquery_planner 中给出。我们将查询优化的主要步骤总结如下:

  • 处理 CTE 表达式,ss_process_ctes;
  • 上提子链接,pull_up_sublinks;
  • FROM 子句中的内联函数,集合操作,RETURN 及函数处理,inline_set_returning_ functions;
  • 上提子查询,pull_up_subqueries;
  • UNION ALL 语句处理,flatten_simple_union_all;
  • 处理 FOR UPDATE(row lock)情况,preprocess_rowmarks;
  • 继承表的处理,expand_inherited_tables;
  • 处理目标列(target list),preprocess_expression;
  • 处理 withCheckOptions,preprocess_expression;
  • 处理 RETURN 表达式,preprocess_expression; 
  • 处理条件语句 -qual,preprocess_qual_conditions; 
  • 处理 HAVING 子句,preprocess_qual_conditions; 
  • 处理 WINDOW 子句,preprocess_qual_conditions; 
  • 处理 LIMIT OFF 子句,preprocess_qual_conditions; 
  • WHERE 和 HAVING 子句中的条件合并,如果存在能合并的 HAVING 子句则将其合并到 WHERE 条件中,否则保留在 HAVING 子句中; 
  • 消除外连接(Outer Join)中的冗余部分,reduce_outer_joins;
  • 生成查询计划,grouping_planner。

书籍介绍

PostgreSQL 作为当今最先进的开源关系型数据库,本书揭示 PostgreSQL 查询引擎运行原理和实现技术细节,其中包括:基础数据结构;SQL 词法语法分析及查询语法树;查询分析及查询重写;子连接及子查询处理;查询访问路径创建;查询计划生成,等等。以深入浅出的方式讨论每个主题并结合基础数据结构、图表、源码等对所讨论的主题进行详细分析,以使读者对 PostgreSQL 查询引擎的运行机制及实现细节能有全面且深入的认识。

2016-09-18 03:504527

评论

发布
暂无评论
发现更多内容

2020年6月最新iOS面试题总结

iOSer

ios 2020 面试 经验总结

食堂就餐卡系统设计 UML 练习

escray

学习 极客大学架构师训练营 UML

Rust闭包的虫洞穿梭

袁承兴

rust 函数式编程 闭包

学习笔记丨浮点数探究

Liuchengz.

C语言 基本数据类型

第一周作业,UML图

等燕归

入行架构师之前,这7项技能你要先了解一下

华为云开发者联盟

架构 架构设计 架构师

Spring-boot 单元测试

陈靓-哲露

GrowingIO 智能运营产品微前端实践

GrowingIO技术专栏

大前端 智能运营

Apache Pulsar 社区周报|09-05 ~ 09-11

Apache Pulsar

开源 云原生 Apache Pulsar 消息中间件

OBS鉴权实现的宝典秘籍,速拿!

华为云开发者联盟

OBS 签名

卧槽!牛逼了!40K+Star!Mall电商实战项目开源回忆录!附源码、教程合集

学习 程序员 架构师 计算机

git的几种实用操作(合并代码与暂存复原代码)

良知犹存

git

HTTP必知必会

陈靓-哲露

JDK15正式发布,划时代的ZGC同时宣布转正

YourBatman

ZGC JDK15

面试官:哪些场景会产生OOM?怎么解决?

艾小仙

Java 架构 面试 编程语言 JVM

QPS、TPS、RT、并发数、吞吐量理解和性能优化深入思考

艾小仙

架构 编程语言

同城快递订单系统架构设计方案

周冬辉

Code Like Sync, Works Like Async

滴滴普惠出行

餐卡系统设计文档

龙卷风

Java基础知识面试题(2020最新版)

Java架构师迁哥

Copy攻城狮辛酸史:含泪“一分钟”跑通MindSpore的LeNet模型

华为云开发者联盟

学习 程序员 mindspore

AWS在线技术峰会2020探班回顾,四大看点不容错过

有只小耳朵

云计算 AI 云原生 金融 医疗

当代开发者的好帮手,浅析.NET敏捷开发框架的优势与特点

Philips

敏捷开发 软件开发 .net core 开发工具

跨专业学习6个月,成功上岸阿里|滴滴,分享学习路线供大家参考

小Q

Java 学习 架构 面试 基础

百度大脑事件图谱:洞察复杂世界中的事件知识

百度大脑

架构师训练营第一期-第一周课后 - 作业二

架构师训练营第一期-第一周课后-作业一

智能门禁的音视频技术应用

anyRTC开发者

音视频 WebRTC 直播 RTC

实战案例丨GaussDB for DWS如何识别坏味道的SQL

华为云开发者联盟

数据库 sql 算子

分布式系统:数据一致性解决方案

马迪奥

分布式事务 一致性

百度大脑助力旅游场景智能解决方案落地

百度大脑

PostgreSQL逻辑优化——整体架构介绍_数据库_李浩_InfoQ精选文章