QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

PostgreSQL 逻辑优化——整体架构介绍

  • 2016-09-18
  • 本文字数:4638 字

    阅读完需:约 15 分钟

编者按:InfoQ 开设新栏目“品味书香”,精选技术书籍的精彩章节,以及分享看完书留下的思考和收获,欢迎大家关注。本文节选自李浩著《 PostgreSQL 查询引擎源码技术探析》中的第4 章“查询逻辑优化”的第4 节“查询优化分析”。

4.4 查询优化分析

一棵完成 transform 和 rewrite 操作的查询树是否是一棵最优的查询树?如果不是,那么又该如何对该查询树进行优化?而优化所使用的策略正是本节要讨论的重点内容,而且优化部分也是整个查询引擎的难点。

子链接(SubLink)如何优化?子查询(SubQuery)又如何处理?对表达式(Expression)如何进行优化?如何寻找最优的查询计划(Cheapest Plan)?哪些因素会影响 JOIN 策略(Join Strategies)的选择,而这些策略又是什么?查询代价(Cost)又是如何估算的?何时需对查询计划进行物化(Plan Materialization)处理等一系列的问题。

在查询计划的优化过程中,对不同的语句类型有着不同的处理策略:

(1)对工具类语句(例如,DML、DDL 语句),不进行更进一步的优化处理。

(2)当语句为非工具语句时,PostgreSQL 使用 pg_plan_queries 对语句进行优化。

与前面一样,PostreSQL 也提供定制化优化引擎接口,我们可以使用自定义优化器 planner_hook,或者使用标准化优化器 standard_planner。

Pg_plan_queries 的函数原型如程序片段 4-15 所示。

程序片段 4-15 pg_plan_queries 的函数原型

复制代码
List *
pg_plan_queries(List *querytrees, int cursorOptions, ParamListInfo boundParams)
{
List *stmt_list = NIL;
ListCell *query_list;
foreach(query_list, querytrees)
{
Query query = (Query ) lfirst(query_list);
Node *stmt;
if (query->commandType == CMD_UTILITY) // 工具类语句
{
/* Utility commands have no plans. */
stmt = query->utilityStmt;
}
else // 非工具类语句,使用 pg_plan_query 完成优化工作
{
stmt = (Node *) pg_plan_query(query, cursorOptions, boundParams);
}
stmt_list = lappend(stmt_list, stmt);
}
return stmt_list;
}
PlannedStmt *
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
if (planner_hook)
result = (*planner_hook) (parse, cursorOptions, boundParams);
else
result = standard_planner(parse, cursorOptions, boundParams);
return result;
}

4.4.1 逻辑优化——整体架构介绍

在未使用第三方提供的优化器时,PostgreSQL 将 planner 函数作为优化的入口函数,并由函数 subquery_planner 来完成具体的优化操作。从图 4-1 中的 Call Stack 我们可以看出 planner 与 subquery_planner 之间的调用关系。

图 4-1 优化调用栈

函数以查询树作为输入参数,并以优化后语句作为返回值。

在 standard_planner 中,首先处理“DECLARE CURSOR stmt”形式的语句,即游标语句,并设置 tuple_fraction 值。那么 tuple_fraction 又是什么呢?

tuple_fraction 描述我们期望获取的元组的比例,0 代表我们需要获取所有的元组;当 tuple_faction∈(0,1) 时,表明我们需要从满足条件的元组中取出 tuple_faction 这么多比例的元组;当 tuple_faction∈[1,+∞) 时,表明我们将按照所指定的元组数进行检索,例如,LIMIT 语句中所指定的元组数。

完成对 tuple_faction 的设置后,进入后续优化流程,subquery_planner 的函数原型如程序片段 4-16 所示。

程序片段 4-16 standard_planner 的函数原型

复制代码
PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
PlannerGlobal *glob;
double tuple_fraction;
PlannerInfo *root;
Plan *top_plan;
ListCell *lp, *lr;
/* Cursor options may come from caller or from DECLARE CURSOR stmt */
if (parse->utilityStmt &&
IsA(parse->utilityStmt, DeclareCursorStmt))
cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
...
// 设置相关的 fraction 值
/* Determine what fraction of the plan is likely to be scanned */
if (cursorOptions & CURSOR_OPT_FAST_PLAN)
{
tuple_fraction = cursor_tuple_fraction;
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0;
else if (tuple_fraction <= 0.0)
tuple_fraction = 1e-10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
// 优化入口点
top_plan = subquery_planner(glob, parse, NULL,
false, tuple_fraction, &root);
if (cursorOptions & CURSOR_OPT_SCROLL)
{
if (!ExecSupportsBackwardScan(top_plan))
top_plan = materialize_finished_plan(top_plan);
}
...
Click and drag to move
}

这里也许读者会迷惑,为什么是 subquery_planner 呢?从名字上看该函数像是用来处理子查询,那么为什么用来作为整个查询语句优化的入口呢(Primary Entry Point)?

子查询语句作为查询语句的一部分,很大程度上与父查询具有相似的结构,同时两者在处理方式和方法上也存在着一定的相似性:子查询的处理流程可以在对其父查询的过程中使用。例如,本例中的子查询语句 SELECT sno FROM student WHERE student.classno = sub.classno,其处理方式与整个查询语句一样。因此,使用 subquery_planner 作为我们查询优化的入口,虽然从函数名上来看其似乎是用于子查询语句的处理。

由 gram.y 中给出的 SelectStmt 的定义可以看出,其中包括了诸如 WINDOWS、HAVING、ORDER BY、GROUP BY 等子句。那么 subquery_planner 函数似乎也应该有相应于这些语句的优化处理。就这点而言,subquery_planner 与原始语法树到查询树的转换所采取的处理方式相似。根据上述分析,我们可给出如程序片段 4-17 所示的 subquery_planner 的函数原型。

程序片段 4-17 subquery_planner 的函数原型

复制代码
Plan* subquery_planner (PlannerGlobal* global, Query* query, …)
{
process_cte (global, query);
process_sublink(global, query);
process_subqueries(global, query) ;
process_expression (query->targetlist, TARGET,…) ;
process_expression (query->returning, RETURNING,…) ;
process_quals_codition(query->jointree,…) ;
}

按照上述给出的原型,只要完成假定的 process_xxx 函数,就可以实现对查询语法树的优化工作。是不是觉得很简单?当然不是,原理很简单,但是理论与实际还有一定的距离。例如,如何处理查询中大量出现的子链接?如何对δ算子执行“下推”?如何选择索引?如何选择 JOIN 策略?这些都需要我们仔细处理。

PostgreSQL 给出的 subquery_planner 如程序片段 4-18 所示。

程序片段 4-18 subquery_planner 函数的实现代码

复制代码
Plan *
subquery_planner(PlannerGlobal *glob, Query *parse,
PlannerInfo *parent_root, bool hasRecursion,
double tuple_fraction, PlannerInfo **subroot)
{
int num_old_subplans = list_length(glob->subplans);
PlannerInfo *root;
/* Create a PlannerInfo data structure for this subquery */
root = makeNode(PlannerInfo);
root->hasRecursion = hasRecursion;
if (hasRecursion)
root->wt_param_id = SS_assign_special_param(root);
else
root->wt_param_id = -1;
root->non_recursive_plan = NULL;
if (parse->cteList)
SS_process_ctes(root);
if (parse->hasSubLinks)
pull_up_sublinks(root); // 子连接上提操作
inline_set_returning_functions(root);
parse->jointree = (FromExpr *)
pull_up_subqueries(root,(Node *) parse->jointree); // 子查询处理
if (parse->setOperations)
flatten_simple_union_all(root);
...
parse->targetList = (List *)
preprocess_expression(root,(Node *) parse->targetList,
EXPRKIND_TARGET);// 目标列处理
...
parse->returningList = (List *)
preprocess_expression(root,(Node *) parse->returningList,
EXPRKIND_TARGET);//returning 语句处理
preprocess_qual_conditions(root,(Node *) parse->jointree);// 处理条件语句
parse->havingQual = preprocess_expression(root, parse->havingQual,
EXPRKIND_QUAL);
foreach(l, parse->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(l);
/* partitionClause/orderClause are sort/group expressions */
wc->startOffset = preprocess_expression(root, wc->startOffset,
EXPRKIND_LIMIT);
wc->endOffset = preprocess_expression(root, wc->endOffset,
EXPRKIND_LIMIT);
}
parse->limitOffset = preprocess_expression(root, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(root, parse->limitCount,
EXPRKIND_LIMIT);
root->append_rel_list = (List *)
preprocess_expression(root, (Node *) root->append_rel_list,
EXPRKIND_APPINFO);
...
newHaving = NIL;
foreach(l, (List *) parse->havingQual)//having 子句优化处理
{
...
}
parse->havingQual = (Node *) newHaving;
...
return plan;
Click and drag to move
}

由 PostgreSQL 给出的实现可以看出,核心处理思想与我们讨论的相一致:依据类型对查询语句进行分类处理。

这里需要读者注意的一点就是查询计划的生成部分,PostgreSQL 将查询计划的生成也归入 subquery_planner 中,但为了方便问题的讨论,我们并未将查询计划的生成部分在 subquery_planner 中给出。我们将查询优化的主要步骤总结如下:

  • 处理 CTE 表达式,ss_process_ctes;
  • 上提子链接,pull_up_sublinks;
  • FROM 子句中的内联函数,集合操作,RETURN 及函数处理,inline_set_returning_ functions;
  • 上提子查询,pull_up_subqueries;
  • UNION ALL 语句处理,flatten_simple_union_all;
  • 处理 FOR UPDATE(row lock)情况,preprocess_rowmarks;
  • 继承表的处理,expand_inherited_tables;
  • 处理目标列(target list),preprocess_expression;
  • 处理 withCheckOptions,preprocess_expression;
  • 处理 RETURN 表达式,preprocess_expression; 
  • 处理条件语句 -qual,preprocess_qual_conditions; 
  • 处理 HAVING 子句,preprocess_qual_conditions; 
  • 处理 WINDOW 子句,preprocess_qual_conditions; 
  • 处理 LIMIT OFF 子句,preprocess_qual_conditions; 
  • WHERE 和 HAVING 子句中的条件合并,如果存在能合并的 HAVING 子句则将其合并到 WHERE 条件中,否则保留在 HAVING 子句中; 
  • 消除外连接(Outer Join)中的冗余部分,reduce_outer_joins;
  • 生成查询计划,grouping_planner。

书籍介绍

PostgreSQL 作为当今最先进的开源关系型数据库,本书揭示 PostgreSQL 查询引擎运行原理和实现技术细节,其中包括:基础数据结构;SQL 词法语法分析及查询语法树;查询分析及查询重写;子连接及子查询处理;查询访问路径创建;查询计划生成,等等。以深入浅出的方式讨论每个主题并结合基础数据结构、图表、源码等对所讨论的主题进行详细分析,以使读者对 PostgreSQL 查询引擎的运行机制及实现细节能有全面且深入的认识。

2016-09-18 03:503903

评论

发布
暂无评论
发现更多内容

从0开始的TypeScriptの五:webpack打包typescript

空城机

JavaScript typescript 大前端 8月日更

Mybatis自定义拦截器与插件开发

码农参上

8月日更

Hive企业级性能优化

五分钟学大数据

hive hive性能优化

【Vue2.x 源码学习】第三十三篇 - diff算法-收尾+阶段性总结

Brave

源码 vue2 8月日更

oeasy教您玩转vim - 14 - # 行头行尾

o

Go语言那些事儿之管道的关闭

Regan Yue

Go 语言 8月日更 管道

全球增长最快的对象存储开源系统MinIO

liuzhen007

8月日更

如果面试官问你 JVM,额外回答逃逸分析技术会让你加分!

陈皮的JavaLib

Java 面试 JVM 逃逸分析 8月日更

JavaScript Array 方法详解

程序员海军

JavaScript 方法 大前端 array 引航计划

Django 做个小后台,细节在完善一点点,滚雪球学 Python 第三阶段

梦想橡皮擦

8月日更

【LeetCode】从上到下打印二叉树Java题解

Albert

算法 LeetCode 8月日更

LeetCode题解:781. 森林中的兔子,贪心,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

在openEuler上做开发?这个大赛拿出30万寻找开源的yyds

华为云开发者联盟

开源 操作系统 服务器 openEuler 鲲鹏

small-spring 代码贡献者3个月,敢说精通Spring了,分享我的总结!

小傅哥

spring 小傅哥 cglib aware BeanPost

在线年龄计算器

入门小站

工具

一文带你了解 TreeMap ,LinkedHashMap 的主要特点

4ye

Java 后端 hashmap LinkedHashMap 8月日更

netty系列之:自动重连

程序那些事

Java Netty 程序那些事 响应式系统

Linux之netstat命令

入门小站

Linux

Android开发:获取安卓App版本号的方法步骤

三掌柜

8月日更

【Flutter 专题】70 图解自定义 ACEStepper 步进器

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 8月日更

七夕赶上服务器架构升级,女朋友的约会怎么办

华为云开发者联盟

华为云 FunctionGraph DevStar Serverless架构 服务器架构

送你两个神器,关系数据库数据入湖轻松应对

华为云开发者联盟

数据库 数据湖 数据迁移 关系数据库 实时数据

Android开发:引入重复包报错Error:Execution failed for task ‘:app:transform...’解决方法

三掌柜

8月日更 8月

失败的小项目-外卖cps

箭上有毒

8月日更

命令行操作Java程序的那些事~

Bob

Java 命令行 8月日更

Rust从0到1-模式-相关语法

rust 语法 模式 Patterns Syntax

金融级IT架构:网商银行是如何进行数字化落地的

博文视点Broadview

Prometheus监控的4个黄金指标

Rubble

Prometheus 8月日更

手撸二叉树之将有序数组转换为二叉搜索树

HelloWorld杰少

数据结构与算法 8月日更

Vue进阶(二十七):Vuex 之 getters, mapGetters, ...mapGetters详解

No Silver Bullet

Vue vuex 8月日更

这几个棘手的面试常见问题,如何高情商的回答?

架构精进之路

情商 8月日更

PostgreSQL逻辑优化——整体架构介绍_数据库_李浩_InfoQ精选文章