AICon 北京站 Keynote 亮点揭秘,想了解 Agent 智能体来就对了! 了解详情
写点什么

混沌工程实践:使用 SMI 和 Linkerd 进行故障注入

  • 2019-07-29
  • 本文字数:2687 字

    阅读完需:约 9 分钟

混沌工程实践:使用SMI和Linkerd进行故障注入

应用程序故障注入是混沌工程的一种形式,在微服务应用程序中人为地增加某些服务的错误率,以查看它对整个系统的影响。传统上,需要在服务代码中添加某种类型的故障注入库,才能对应用程序进行故障注入,值得庆幸的是,服务网格提供了一种无需修改或重构服务的应用程序故障注入方法。



结构良好的微服务应用程序有一个特点,它可以优雅地容忍单点服务故障。当这些故障以服务崩溃的形式出现时,Kubernetes 在修复服务崩溃故障方面做的非常好,它可以通过创建新的 Pods 替换崩溃的 Pods 的方式来修复这些故障。然而,故障也可能更加微妙,如导致服务返回的错误率升高。对于这种类型的故障,Kubernetes 就不能自动修复了,仍然会导致部分功能丧失。

使用流量分割 SMI API 注入错误

使用服务网格接口(Service Mesh Interface,SMI)的流量分割API(Traffic Split API)可以轻松实现应用程序故障注入。这是一种与实现无关且跨服务网格的故障注入方式。


为了实现这种形式的故障注入,首先,我们部署一个只返回错误的新服务。它既可以是一个简单的服务,比如一个配置成返回 HTTP 500 的 NGINX 服务,也可以是一个更复杂的服务,返回我们为了测试某些条件而专门设计的错误。其次,我们创建一个流量分割资源,用该资源来指导服务网格将目标服务流量按照百分比发送到错误服务上。例如,通过将 10%的服务流量发送到错误服务上,来人为地实现向该服务注入 10%的错误率。


我们一起看一个使用 Linkerd 作为服务网格实现的示例。

示例

首先,我们安装 Linkerd CLI,并将它部署到 Kubernetes 集群上:


> curl https://run.linkerd.io/install | sh> export PATH=$PATH:$HOME/.linkerd2/bin> linkerd install | kubectl apply -f -> linkerd check
复制代码


然后,我们安装一个“booksapp”示例应用程序:


> linkerd inject https://run.linkerd.io/booksapp.yml | kubectl apply -f -
复制代码


该应用程序的某个服务已经配置了错误率,但这个示例是为了说明,我们不需要任何支持也可以在应用程序中注入错误,所以,需要删除应用程序中配置的错误率:


> kubectl edit deploy/authors# Find and remove these lines:#        - name: FAILURE_RATE#          value: "0.5"
复制代码


我们看到应用程序可以正常运行了:


> linkerd stat deployNAME             MESHED   SUCCESS      RPS   LATENCY_P50   LATENCY_P95   LATENCY_P99   TCP_CONNauthors             1/1   100.00%   6.6rps           3ms          58ms          92ms          6books               1/1   100.00%   8.0rps           4ms          81ms         119ms          6traffic             1/1         -        -             -             -             -          -webapp              3/3   100.00%   7.7rps          24ms          91ms         117ms          9
复制代码


现在,我们创建一个错误服务。在此,我使用配置成返回 HTTP 500 状态代码的 NGINX,创建一个名为 error-injector.yaml 的文件:


apiVersion: apps/v1kind: Deploymentmetadata:  name: error-injector  labels:    app: error-injectorspec:  selector:    matchLabels:      app: error-injector  replicas: 1  template:    metadata:      labels:        app: error-injector    spec:      containers:        - name: nginx          image: nginx:alpine          ports:          - containerPort: 80            name: nginx            protocol: TCP          volumeMounts:            - name: nginx-config              mountPath: /etc/nginx/nginx.conf              subPath: nginx.conf      volumes:        - name: nginx-config          configMap:            name: error-injector-config---apiVersion: v1kind: Servicemetadata:  labels:    app: error-injector  name: error-injectorspec:  clusterIP: None  ports:  - name: service    port: 7002    protocol: TCP    targetPort: nginx  selector:    app: error-injector  type: ClusterIP---apiVersion: v1data: nginx.conf: |2
events { worker_connections 1024; }
http { server { location / { return 500; } } }kind: ConfigMapmetadata: name: error-injector-config
复制代码


部署 error-injector.yaml 文件 :


> kubectl apply -f error-injector.yaml
复制代码


现在,我们创建一个流量分割资源,它会将 10%的流量从“books”服务重定向到“error-injector”错误服务。该资源文件命名为 error-split.yaml:


apiVersion: split.smi-spec.io/v1alpha1kind: TrafficSplitmetadata:  name: error-splitspec:  service: books  backends:  - service: books    weight: 900m  - service: error-injector    weight: 100m
复制代码


部署 error-split.yaml 文件:


> kubectl apply -f error-split.yaml
复制代码


现在,我们可以看到从 webapp 到 books 的调用错误率为 10%:


> linkerd routes deploy/webapp --to service/booksROUTE       SERVICE   SUCCESS      RPS   LATENCY_P50   LATENCY_P95   LATENCY_P99[DEFAULT]     books    90.66%   6.6rps           5ms          80ms          96ms
复制代码


我们还可以看到应用程序是如何优雅地处理这些故障:


> kubectl port-forward deploy/webapp 7000 &> open http://localhost:7000
复制代码


如果多刷几次页面,我们有时会看到内部服务错误页面。



关于应用程序是如何处理服务错误的,我们已经学到了一些有价值的东西,现在,我们通过简单的删除流量分割资源,来恢复我们的应用程序:


> kubectl delete trafficsplit/error-split
复制代码

结论

在本文中,通过使用 SMI API(由 Linkerd 提供支持)动态地将一部分流量重定向到简单的“始终失败”的目标服务,我们演示了一种在服务级别快速简便地进行故障注入的方式。这种方式的优势在于,我们仅通过 SMI API 就可实现故障注入,而无需更改任何应用程序代码。


当然,故障注入是一个很泛的话题,还有很多更复杂的故障注入方式,包括路由失败、让匹配特定条件的请求失败、或者在整个应用程序拓扑中传播单个“毒丸”请求。这些类型的故障注入需要比本文所涵盖内容更多的支持机制。


Linkerd 是一个由云原生计算基金会(Cloud Native Computing Foundation,CNCF)托管的社区项目。Linkerd 托管在GitHub上,在SlackTwittermailing lists上社区也很活跃,感兴趣的开发者可以下载试用。


原文链接:


https://linkerd.io/2019/07/18/failure-injection-using-the-service-mesh-interface-and-linkerd/index.html


2019-07-29 08:4211762
用户头像

发布了 404 篇内容, 共 278.4 次阅读, 收获喜欢 653 次。

关注

评论

发布
暂无评论
发现更多内容

Optimism为 CQT提供价值 20 万美元的生态系统资助,以表彰其支持

股市老人

听GPT 讲Deno源代码(5)

fliter

听GPT 讲Deno源代码(6)

fliter

考研失败如何快速找到编程工作?

王磊

Java 考研

使用 TiKV 读改写 TiDB 数据

TiDB 社区干货传送门

TiDB 源码解读 TiKV 底层架构

php作业1

大肚皮狒狒

vben Admin 01- 安装,初始设置

麦兜

听GPT 讲Deno源代码(7)

fliter

TIKV 分布式事务--乐观事务 2PC 概览

TiDB 社区干货传送门

TiDB 底层架构 TiKV 源码解读

跨越财务困境,聚道云软件连接器如何助力企业轻松实现数字化转型?

聚道云软件连接器

案例分享

新年新岁,好运 long long

阿里云CloudImagine

云计算 视频云

TiDB 与MySQL优化器在特定语句下执行效果对比(二)

TiDB 社区干货传送门

性能调优 实践案例 版本测评 新版本/特性发布 6.x 实践

汽车零部件MES系统实施方案

万界星空科技

汽车 mes 万界星空科技 汽车零部件

数据所在,计算随行:Databend 的 2023 年度总结

Databend

2023年总结

wood

TiDB 与MySQL优化器在特定语句下执行效果对比(一)

TiDB 社区干货传送门

性能调优 实践案例 版本测评

【奖项公布】首届全球 TiDB 文档挑战赛圆满收官!来看看前五名花落谁家!

TiDB 社区干货传送门

年青DBA应该学习的数据库之TiDB

TiDB 社区干货传送门

数据库架构设计 数据库前沿趋势

根深叶茂,众行致远 | OpenHarmony项目群技术指导委员会迎新春,展未来

科技热闻

听GPT 讲Deno源代码(3)

fliter

文心一言 VS 讯飞星火 VS chatgpt (198)-- 算法导论14.3 6题

福大大架构师每日一题

福大大架构师每日一题

听GPT 讲Deno源代码(4)

fliter

Java break、continue 详解与数组深入解析:单维数组和多维数组详细教程

小万哥

Java 程序人生 编程语言 软件工程 后端开发

TiDB 7.5.0 LTS 高性能数据批处理方案

TiDB 社区干货传送门

新版本/特性解读

TiFlash亿级多表关联优化实践,从无法跑出结果优化到2.59秒

TiDB 社区干货传送门

性能调优 实践案例 OLAP 场景实践

初识TiDB的增量数据同步工具TiCDC

TiDB 社区干货传送门

迁移 实践案例 7.x 实践

文心一言 VS 讯飞星火 VS chatgpt (197)-- 算法导论14.3 5题

福大大架构师每日一题

福大大架构师每日一题

阿里云-负载均衡(ALB)

智慧源点

ALB

混沌工程实践:使用SMI和Linkerd进行故障注入_文化 & 方法_Alex Leong_InfoQ精选文章