QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

算法图解之算法简介

  • 2019-10-15
  • 本文字数:6791 字

    阅读完需:约 22 分钟

算法图解之算法简介

本章内容主要包括:查找算法“二分查找”,算法的运行时间“大 O 表示法”,以及一种常用的算法设计方法“递归”。

1.1 引言

算法是一组完成任务的指令。任何代码片段都可视为算法,但本书只介绍比较有趣的部分。本书介绍的算法要么速度快,要么能解决有趣的问题,要么兼而有之。下面是书中一些重要内容。


  • 第 1 章讨论二分查找,并演示算法如何能够提高代码的速度。在一个示例中,算法将需要执行的步骤从 40 亿个减少到了 32 个!

  • GPS 设备使用图算法来计算前往目的地的最短路径,这将在第 6、7 和 8 章介绍。

  • 你可使用动态规划来编写下国际跳棋的 AI 算法,这将在第 9 章讨论。


对于每种算法,本书都将首先进行描述并提供示例,再使用大 O 表示法讨论其运行时间,最后探索它可以解决的其他问题。

1.1.1 性能方面

好消息是,本书介绍的每种算法都很可能有使用你喜欢的语言编写的实现,因此你无需自己动手编写每种算法的代码!但如果你不明白其优缺点,这些实现将毫无用处。在本书中,你将学习比较不同算法的优缺点:该使用合并排序算法还是快速排序算法,或者该使用数组还是链表。仅仅改用不同的数据结构就可能让结果大不相同。

1.1.2 问题解决技巧

你将学习至今都没有掌握的问题解决技巧,例如:


  • 如果你喜欢开发电子游戏,可使用图算法编写跟踪用户的 AI 系统;

  • 你将学习使用 K 最近邻算法编写推荐系统;

  • 有些问题在有限的时间内是不可解的!书中讨论 NP 完全问题的部分将告诉你,如何识别这样的问题以及如何设计找到近似答案的算法。


总而言之,读完本书后,你将熟悉一些使用最为广泛的算法。利用这些新学到的知识,你可学习更具体的 AI 算法、数据库算法等,还可在工作中迎接更严峻的挑战。


需要具备的知识

要阅读本书,需要具备基本的代数知识。具体地说,给定函数 f(x) = x × 2,f(5)的值是多少呢?如果你的答案为 10,那就够了。

另外,如果你熟悉一门编程语言,本章(以及本书)将更容易理解。本书的示例都是使用 Python 编写的。如果你不懂任何编程语言但想学习一门,请选择 Python,它非常适合初学者;如果你熟悉其他语言,如 Ruby,对阅读本书也大有帮助。

1.2 二分查找

假设要在电话簿中找一个名字以 K 打头的人,(现在谁还用电话簿!)可以从头开始翻页,直到进入以 K 打头的部分。但你很可能不这样做,而是从中间开始,因为你知道以 K 打头的名字在电话簿中间。



又假设要在字典中找一个以 O 打头的单词,你也将从中间附近开始。


现在假设你登录 Facebook。当你这样做时,Facebook 必须核实你是否有其网站的账户,因此必须在其数据库中查找你的用户名。如果你的用户名为 karlmageddon,Facebook 可从以 A 打头的部分开始查找,但更合乎逻辑的做法是从中间开始查找。


这是一个查找问题,在前述所有情况下,都可使用同一种算法来解决问题,这种算法就是二分查找



二分查找是一种算法,其输入是一个有序的元素列表(必须有序的原因稍后解释)。如果要查找的元素包含在列表中,二分查找返回其位置;否则返回 null。


下图是一个例子。



下面的示例说明了二分查找的工作原理。我随便想一个 1~100 的数字。



你的目标是以最少的次数猜到这个数字。你每次猜测后,我会说小了、大了或对了。


假设你从 1 开始依次往上猜,猜测过程会是这样。



这是简单查找,更准确的说法是傻找。每次猜测都只能排除一个数字。如果我想的数字是 99,你得猜 99 次才能猜到!

1.2.1 更佳的查找方式

下面是一种更佳的猜法。从 50 开始。



小了,但排除了一半的数字!至此,你知道 1~50 都小了。接下来,你猜 75。



大了,那余下的数字又排除了一半!使用二分查找时,你猜测的是中间的数字,从而每次都将余下的数字排除一半。接下来,你猜 63(50 和 75 中间的数字)。



这就是二分查找,你学习了第一种算法!每次猜测排除的数字个数如下。



不管我心里想的是哪个数字,你在 7 次之内都能猜到,因为每次猜测都将排除很多数字!


假设你要在字典中查找一个单词,而该字典包含 240 000 个单词,你认为每种查找最多需要多少步?



如果要查找的单词位于字典末尾,使用简单查找将需要 240 000 步。使用二分查找时,每次排除一半单词,直到最后只剩下一个单词。



因此,使用二分查找只需 18 步——少多了!一般而言,对于包含 n 个元素的列表,用二分查找最多需要 log2n 步,而简单查找最多需要 n 步。


对数

你可能不记得什么是对数了,但很可能记得什么是幂。log10100 相当于问“将多少个 10 相乘的结果为 100”。答案是两个:10 × 10 = 100。因此,log10100 = 2。对数运算是幂运算的逆运算。


对数是幂运算的逆运算

本书使用大 O 表示法(稍后介绍)讨论运行时间时,log 指的都是 log2。使用简单查找法查找元素时,在最糟情况下需要查看每个元素。因此,如果列表包含 8 个数字,你最多需要检查 8 个数字。而使用二分查找时,最多需要检查 log n 个元素。如果列表包含 8 个元素,你最多需要检查 3 个元素,因为 log 8 = 3(23 = 8)。如果列表包含 1024 个元素,你最多需要检查 10 个元素,因为 log 1024 = 10(210 =1024)。


说明

本书经常会谈到 log 时间,因此你必须明白对数的概念。如果你不明白,可汗学院(khanacademy.org)有一个不错的视频,把这个概念讲得很清楚。


说明

仅当列表是有序的时候,二分查找才管用。例如,电话簿中的名字是按字母顺序排列的,因此可以使用二分查找来查找名字。如果名字不是按顺序排列的,结果将如何呢?

下面来看看如何编写执行二分查找的 Python 代码。这里的代码示例使用了数组。如果你不熟悉数组,也不用担心,下一章就会介绍。你只需知道,可将一系列元素存储在一系列相邻的桶(bucket),即数组中。这些桶从 0 开始编号:第一个桶的位置为 #0,第二个桶为 #1,第三个桶为 #2,以此类推。


函数 binary_search 接受一个有序数组和一个元素。如果指定的元素包含在数组中,这个函数将返回其位置。你将跟踪要在其中查找的数组部分——开始时为整个数组。


low = 0high = len(list) - 1
复制代码



你每次都检查中间的元素。


mid = (low + high) / 2  ←---如果(low + high)不是偶数,Python自动将mid向下取整。guess = list[mid]
复制代码


如果猜的数字小了,就相应地修改 low。


if guess < item:  low = mid + 1
复制代码



如果猜的数字大了,就修改 high。完整的代码如下。


def binary_search(list, item):  low = 0    (以下2行)low和high用于跟踪要在其中查找的列表部分  high = len(list)—1    while low <= high:  ←-------------只要范围没有缩小到只包含一个元素,    mid = (low + high) / 2  ←-------------就检查中间的元素    guess = list[mid]    if guess == item:  ←-------------找到了元素      return mid    if guess > item:  ←-------------猜的数字大了      high = mid - 1    else:  ←---------------------------猜的数字小了      low = mid + 1  return None  ←--------------------没有指定的元素my_list = [1, 3, 5, 7, 9]  ←------------来测试一下!print binary_search(my_list, 3) # => 1  ←--------------------别忘了索引从0开始,第二个位置的索引为1print binary_search(my_list, -1) # => None  ←--------------------在Python中,None表示空,它意味着没有找到指定的元素
复制代码


练习


1.1 假设有一个包含 128 个名字的有序列表,你要使用二分查找在其中查找一个名字,请 问最多需要几步才能找到?


1.2 上面列表的长度翻倍后,最多需要几步?

1.2.2 运行时间

每次介绍算法时,我都将讨论其运行时间。一般而言,应选择效率最高的算法,以最大限度地减少运行时间或占用空间。



回到前面的二分查找。使用它可节省多少时间呢?简单查找逐个地检查数字,如果列表包含 100 个数字,最多需要猜 100 次。如果列表包含 40 亿个数字,最多需要猜 40 亿次。换言之,最多需要猜测的次数与列表长度相同,这被称为线性时间(linear time)。


二分查找则不同。如果列表包含 100 个元素,最多要猜 7 次;如果列表包含 40 亿个数字,最多需猜 32 次。厉害吧?二分查找的运行时间为对数时间(或 log 时间)。下表总结了我们发现的情况。


1.3 大 O 表示法

大 O 表示法是一种特殊的表示法,指出了算法的速度有多快。谁在乎呢?实际上,你经常要使用别人编写的算法,在这种情况下,知道这些算法的速度大有裨益。本节将介绍大 O 表示法是什么,并使用它列出一些最常见的算法运行时间。

1.3.1 算法的运行时间以不同的速度增加

Bob 要为 NASA 编写一个查找算法,这个算法在火箭即将登陆月球前开始执行,帮助计算着陆地点。



这个示例表明,两种算法的运行时间呈现不同的增速。Bob 需要做出决定,是使用简单查找还是二分查找。使用的算法必须快速而准确。一方面,二分查找的速度更快。Bob 必须在 10 秒钟内找出着陆地点,否则火箭将偏离方向。另一方面,简单查找算法编写起来更容易,因此出现 bug 的可能性更小。Bob 可不希望引导火箭着陆的代码中有 bug!为确保万无一失,Bob 决定计算两种算法在列表包含 100 个元素的情况下需要的时间。


假设检查一个元素需要 1 毫秒。使用简单查找时,Bob 必须检查 100 个元素,因此需要 100 毫秒才能查找完毕。而使用二分查找时,只需检查 7 个元素(log2100 大约为 7),因此需要 7 毫秒就能查找完毕。然而,实际要查找的列表可能包含 10 亿个元素,在这种情况下,简单查找需要多长时间呢?二分查找又需要多长时间呢?请务必找出这两个问题的答案,再接着往下读。



Bob 使用包含 10 亿个元素的列表运行二分查找,运行时间为 30 毫秒(log21 000 000 000 大约为 30)。他心里想,二分查找的速度大约为简单查找的 15 倍,因为列表包含 100 个元素时,简单查找需要 100 毫秒,而二分查找需要 7 毫秒。因此,列表包含 10 亿个元素时,简单查找需要 30 × 15 = 450 毫秒,完全符合在 10 秒内查找完毕的要求。Bob 决定使用简单查找。这是正确的选择吗?


不是。实际上,Bob 错了,而且错得离谱。列表包含 10 亿个元素时,简单查找需要 10 亿毫秒,相当于 11 天!为什么会这样呢?因为二分查找和简单查找的运行时间的增速不同。



也就是说,随着元素数量的增加,二分查找需要的额外时间并不多,而简单查找需要的额外时间却很多。因此,随着列表的增长,二分查找的速度比简单查找快得多。Bob 以为二分查找速度为简单查找的 15 倍,这不对:列表包含 10 亿个元素时,为 3300 万倍。有鉴于此,仅知道算法需要多长时间才能运行完毕还不够,还需知道运行时间如何随列表增长而增加。这正是大 O 表示法的用武之地。



大 O 表示法指出了算法有多快。例如,假设列表包含 n 个元素。简单查找需要检查每个元素,因此需要执行 n 次操作。使用大 O 表示法,这个运行时间为 O(n)。单位秒呢?没有——大 O 表示法指的并非以秒为单位的速度。大 O 表示法让你能够比较操作数,它指出了算法运行时间的增速


再来看一个例子。为检查长度为 n 的列表,二分查找需要执行 log n 次操作。使用大 O 表示法,这个运行时间怎么表示呢?O(log n)。一般而言,大 O 表示法像下面这样。



这指出了算法需要执行的操作数。之所以称为大 O 表示法,是因为操作数前有个大 O。这听起来像笑话,但事实如此!


下面来看一些例子,看看你能否确定这些算法的运行时间。

1.3.2 理解不同的大 O 运行时间

下面的示例,你在家里使用纸和笔就能完成。假设你要画一个网格,它包含 16 个格子。



算法 1


一种方法是以每次画一个的方式画 16 个格子。记住,大 O 表示法计算的是操作数。在这个示例中,画一个格子是一次操作,需要画 16 个格子。如果每次画一个格子,需要执行多少次操作呢?



画 16 个格子需要 16 步。这种算法的运行时间是多少?


算法 2


请尝试这种算法——将纸折起来。



在这个示例中,将纸对折一次就是一次操作。第一次对折相当于画了两个格子!


再折,再折,再折。



折 4 次后再打开,便得到了漂亮的网格!每折一次,格子数就翻倍,折 4 次就能得到 16 个格子!



你每折一次,绘制出的格子数都翻倍,因此 4 步就能“绘制”出 16 个格子。这种算法的运行时间是多少呢?请搞清楚这两种算法的运行时间之后,再接着往下读。


答案如下:算法 1 的运行时间为 O(n),算法 2 的运行时间为 O(log n)。

1.3.3 大 O 表示法指出了最糟情况下的运行时间

假设你使用简单查找在电话簿中找人。你知道,简单查找的运行时间为 O(n),这意味着在最糟情况下,必须查看电话簿中的每个条目。如果要查找的是 Adit——电话簿中的第一个人,一次就能找到,无需查看每个条目。考虑到一次就找到了 Adit,请问这种算法的运行时间是 O(n)还是 O(1)呢?


简单查找的运行时间总是为 O(n)。查找 Adit 时,一次就找到了,这是最佳的情形,但大 O 表示法说的是最糟的情形。因此,你可以说,在最糟情况下,必须查看电话簿中的每个条目,对应的运行时间为 O(n)。这是一个保证——你知道简单查找的运行时间不可能超过 O(n)。


说明

除最糟情况下的运行时间外,还应考虑平均情况的运行时间,这很重要。最糟情况和平均情况将在第 4 章讨论。

1.3.4 一些常见的大 O 运行时间

下面按从快到慢的顺序列出了你经常会遇到的 5 种大 O 运行时间。


  • O(log n),也叫对数时间,这样的算法包括二分查找。

  • O(n),也叫线性时间,这样的算法包括简单查找。

  • O(n * log n),这样的算法包括第 4 章将介绍的快速排序——一种速度较快的排序算法。

  • O(n2),这样的算法包括第 2 章将介绍的选择排序——一种速度较慢的排序算法。

  • O(n!),这样的算法包括接下来将介绍的旅行商问题的解决方案——一种非常慢的算法。


假设你要绘制一个包含 16 格的网格,且有 5 种不同的算法可供选择,这些算法的运行时间如上所示。如果你选择第一种算法,绘制该网格所需的操作数将为 4(log 16 = 4)。假设你每秒可执行 10 次操作,那么绘制该网格需要 0.4 秒。如果要绘制一个包含 1024 格的网格呢?这需要执行 10(log 1024 = 10)次操作,换言之,绘制这样的网格需要 1 秒。这是使用第一种算法的情况。


第二种算法更慢,其运行时间为 O(n)。即要绘制 16 个格子,需要执行 16 次操作;要绘制 1024 个格子,需要执行 1024 次操作。执行这些操作需要多少秒呢?


下面按从快到慢的顺序列出了使用这些算法绘制网格所需的时间:



还有其他的运行时间,但这 5 种是最常见的。


这里做了简化,实际上,并不能如此干净利索地将大 O 运行时间转换为操作数,但就目前而言,这种准确度足够了。等你学习其他一些算法后,第 4 章将回过头来再次讨论大 O 表示法。当前,我们获得的主要启示如下。


算法的速度指的并非时间,而是操作数的增速。


  • 谈论算法的速度时,我们说的是随着输入的增加,其运行时间将以什么样的速度增加。

  • 算法的运行时间用大 O 表示法表示。

  • O(log n)比 O(n)快,当需要搜索的元素越多时,前者比后者快得越多。


练习


使用大 O 表示法给出下述各种情形的运行时间。


1.3 在电话簿中根据名字查找电话号码。


1.4 在电话簿中根据电话号码找人。(提示:你必须查找整个电话簿。)


1.5 阅读电话簿中每个人的电话号码。


1.6 阅读电话簿中姓名以 A 打头的人的电话号码。这个问题比较棘手,它涉及第 4 章的概 念。答案可能让你感到惊讶!

1.3.5 旅行商

阅读前一节时,你可能认为根本就没有运行时间为 O(n!)的算法。让我来证明你错了!下面就是一个运行时间极长的算法。这个算法要解决的是计算机科学领域非常著名的旅行商问题,其计算时间增加得非常快,而有些非常聪明的人都认为没有改进空间。



有一位旅行商。


他需要前往 5 个城市。



这位旅行商(姑且称之为 Opus 吧)要前往这 5 个城市,同时要确保旅程最短。为此,可考虑前往这些城市的各种可能顺序。



对于每种顺序,他都计算总旅程,再挑选出旅程最短的路线。5 个城市有 120 种不同的排列方式。因此,在涉及 5 个城市时,解决这个问题需要执行 120 次操作。涉及 6 个城市时,需要执行 720 次操作(有 720 种不同的排列方式)。涉及 7 个城市时,需要执行 5040 次操作!



推而广之,涉及 n 个城市时,需要执行 n!(n 的阶乘)次操作才能计算出结果。因此运行时间为 O(n!),即阶乘时间。除非涉及的城市数很少,否则需要执行非常多的操作。如果涉及的城市数超过 100,根本就不能在合理的时间内计算出结果——等你计算出结果,太阳都没了。


这种算法很糟糕!Opus 应使用别的算法,可他别无选择。这是计算机科学领域待解的问题之一。对于这个问题,目前还没有找到更快的算法,有些很聪明的人认为这个问题根本就没有更巧妙的算法。面对这个问题,我们能做的只是去找出近似答案,更详细的信息请参阅第 10 章。


最后需要指出的一点是,高水平的读者可研究一下二叉树,这在最后一章做了简要的介绍。

1.4 小结

  • 二分查找的速度比简单查找快得多。

  • O(log n)比 O(n)快。需要搜索的元素越多,前者比后者就快得越多。

  • 算法运行时间并不以秒为单位。

  • 算法运行时间是从其增速的角度度量的。

  • 算法运行时间用大 O 表示法表示。


本文内容来自作者图书作品《算法图解》,点击购买


2019-10-15 19:521166

评论

发布
暂无评论
发现更多内容

鸿蒙JSON对象里面的Map类型的数据如何接收

flfljh

harmony_flutter_orientation_plugins(监听屏幕状态插件)

flfljh

鸿蒙+next实现页签栏平板端适配

flfljh

反向海淘与反向代购的盈利之道及代购系统建站挑战

代码忍者

代购系统 跨境独立站

《Django 5 By Example》阅读笔记:p614-p644

codists

Python django

鸿蒙+next+实现知识点列表的重复布局

flfljh

鸿蒙+next+判断+Swiper+是否在最后一个元素并向右滑动与在第一个元素并向左滑动

flfljh

鸿蒙+next+实现试卷计时器

flfljh

鸿蒙+next+使用并封装EmitterUtil

flfljh

鸿蒙Flutter性能调优分析之帧渲染跟踪

flfljh

鸿蒙Flutter之解析flutter相关的cppcrash堆栈

flfljh

鸿蒙next中Web的使用

flfljh

鸿蒙开发:前端页面调用 ArkTS 函数全解析

flfljh

横竖屏切换开发实践

flfljh

Ascend Extension for PyTorch的源码解析

zjun

模型 PyTorch Ascend

深度学习的下一站:解锁人工智能的新边界

天津汇柏科技有限公司

深度学习 AI 人工智能

鸿蒙ArkWeb 跨域请求

flfljh

鸿蒙应用开发从入门到入行 - 篇3:ArkUI布局基础与制作可交互页面

猫林老师

鸿蒙 HarmonyOS 鸿蒙应用开发 鸿蒙原生应用开发 HarmonyOS NEXT

安全架构师的自我修炼:从原则到实践

I

安全架构师 信息安全 安全设计 企业安全 安全架构设计

VMware Fusion 13.6.2 OEM BIOS 2.7

sysin

VMware Fusion 虚拟机

HarmonyOs基础入门02

flfljh

msprofiler前置知识:如何看懂tracing profile文件?

zjun

性能 debug Trace

“全球金牌敏捷课程” · 12月28-29日CSM认证课程 · Jim老师引导讨论AI & Agility话题

ShineScrum

harmony_flutter_更新Flutter插件项目结构

flfljh

Splunk Enterprise 9.4 发布,新增功能概览

sysin

Splunk Enterprise

鸿蒙Flutter性能调优之滑动响应时延

flfljh

第78期 | GPTSecurity周报

云起无垠

Ascend Extension for PyTorch是个what?

zjun

PyTorch CANN Ascend

Ascend上的FlashAttention实现

zjun

Transformer 大模型 Ascend

harmony_flutter_videoCompress(视频压缩)

flfljh

VMware Workstation 17.6.2 Pro Unlocker & OEM BIOS 2.7 for Windows & Linux

sysin

Workstation

算法图解之算法简介_语言 & 开发_Aditya Bhargava_InfoQ精选文章