AICon 北京站 Keynote 亮点揭秘,想了解 Agent 智能体来就对了! 了解详情
写点什么

强化学习在推荐算法的应用论文整理(一)

  • 2019-11-29
  • 本文字数:1934 字

    阅读完需:约 6 分钟

强化学习在推荐算法的应用论文整理(一)

一. 京东在强化学习的几篇文章


Deep Reinforcement Learning for List-wise Recommendations


本文将推荐的过程定义为一个序列决策的问题,通过 Actor-Critic 算法来进行 List-wise 的推荐。


模型结构:Actor-Critic



主要贡献:


  • 构建了一个线上环境仿真器,用于输出从未出现过的状态动作对的奖励,然后可线下对 Actor-Critic 网络参数进行训练。

  • 构建了基于强化学习的 List-wise 推荐系统。


  1. Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning


主要创新点:考虑负反馈以及商品的偏序关系,并将这种偏序关系建模到 DQN 的 loss 函数中。


若一个商品能够找到其偏序关系(两个商品必须是同一类别,用户反馈不同,推荐时间要相近)的物品,此时模型即希望预估的 Q 值和实际的 Q 值相近,同时又希望有偏序关系的两个商品的 Q 值差距越大越好。


框架:



  1. Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems


新颖处:状态中加入了用户的反馈、停留时长。


MDP 建模:


  • 状态:初始的状态 s1={u},即只有用户的信息。当进行了第一次推荐后,状态变为 s2={u,(i1,f1,d1)}。当推荐过 t-1 个物品后,状态 st = {u,(i1,f1,d1),(i2,f2,d2),…,(it-1,ft-1,dt-1)}。即 st = st-1 + {(it-1,ft-1,dt-1)}。这里 it-1 代表第 t-1 时刻推荐的物品,ft-1 表示用户对物品 it-1 作出的反馈,dt-1 表示用户对推荐的物品 it-1 的停留时间。

  • 动作:可推荐的物品的集合,时刻 t 的动作就是该轮推荐的物品 it。

  • 状态转移概率:p(st+1| st,it)

  • 奖赏:点击次数、滑动深度和用户下次访问 APP 的时间奖励这三者的加权平均。

  • 模型分为 Q 网络和 S 网络,其中 Q 网络来拟合状态动作对的价值函数,S 网络是一个仿真环境,用于输出奖赏值。



可以看到最终的 state 表示是(4 个 LSTM 模块提取的输出 + 用户的 embedding) +item 的 embedding 表示,模型的更新和传统的 DQN 没什么区别。这里为什么要用 4 个 LSTM 呢?因为只用一个 LSTM 的话,正向行为(点击或购买)的信息容易被大都数负向行为所冲刷掉。并且用户不同的行为都有自己的特征。比如点击行为通常表现出用户的当前兴趣偏好;购买行为表现出用户的兴趣转移过程等等。



输出共有四部分,分别是预测用户的反馈形式、预测用户的停留时间、预测用户再次进入 App 的时间间隔、预测用户是否会关闭 APP。通过训练,得到的模型就可以去预估奖赏值,从而构造完整的 transition 样本用于 Q 网络的训练。


  1. Toward Simulating Environments in Reinforcement Learning Based Recommendations


基于 gan,提出了一种 RL 的仿真环境,用于产生训练数据。有 gan 就会有 generate 和 discriminator,其中 generate 的结构为:



为 encoder-decoder 结构,其中 encoder 的输入为用户的浏览序列 e+f(商品+用户对商品的反馈),然后经过 embedding 层,然后再 concat 起来,最后通过 GRU 层得到最终的 hidden state,表示用户当前的偏好。Deocder 的目标是预测下一个要推荐给用户的商品,输入是用户当前的偏好,经过多层的 MLP 得到一个向量。为了得到一个具体推荐的商品,可以拿所有待推荐的商品 embedding 分别和 decoder 输出的向量计算相似度,选择相似度最高的一个商品推荐给用户。


Discriminator 结构:



上图左下角的输入和 generator 一样,但是参数不同。右下角把真实的推荐商品和 generator 生成的推荐商品作为输入,经过两层 MLP 得到输出 [公式],然后将两部分输出 concat 起来经过 MLP 和 softmax 层得到最终的输出,长度为 2*K,其中 K 代表用户反馈类型的种类。输出结果为:



输出前 k 维表示如果这个输入的是真实的商品(这里的真实商品即用户在当前状态下,下一个实际浏览的商品)的话,用户的每种反馈的概率,后 K 维表示,如果这个输入是 Generator 产生的话,用户的每种反馈的概率。


那么怎么训练 Discriminator 和 Generator 呢?对于 Discriminator 来说共有两个目标,判断输入是真实的商品还是 Generator 产生的,同时,要保证用户真实的反馈和 Discriminator 得到的用户反馈类型分布的差距要大。对于 Generator 来说,同样有两部分的损失,一是希望能尽可能骗过 Discriminator,使得 Discriminator 将 Generator 产生的推荐商品判别为假的概率越低越好,二是希望产生的推荐商品向量,与真实序列中下一个商品的向量距离越近越好。


总结来说,使用 GAN 还是为了解决 RL 应用在电商领域中的一些限制:比如商品和用户数量巨大,导致整个的状态空间和动作空间十分巨大,每个用户的训练样本较稀疏,这样直接训练会导致模型不鲁棒,上线实验也会造成用户体验的损害。使用 GAN 来产生一些离线训练样本会一定程度上解决该问题。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/77332847


2019-11-29 11:401815

评论

发布
暂无评论
发现更多内容

MyBatis-技术专题-拦截器介绍

码界西柚

技术体系的构成

凌晞

技术 技术管理 研发体系

2020,国产数据库崭露峥嵘的发轫之年

墨天轮

数据库 阿里云 华为云 SQL优化 热门活动

我从高级开发者身上学到的19条编码原则

Java架构师迁哥

第一周学习总结

Griffenliu

Spring 5.2.7和SpringBoot 2.3.3中文翻译发布啦!!!

青年IT男

spring springboot

架构师训练营 1 期 - 第五周 - 技术选型

三板斧

极客大学架构师训练营

【API进阶之路】研发需求突增3倍,测试团队集体闹离职

华为云开发者联盟

软件开发 开发 开发测试

普通人如何站在时代风口学好AI?这是我看过最好的答案

华为云开发者联盟

AI 算法

极客时间架构师训练营第一周学习总结

爱码士

课程总结

两个程序员老友的会面

Philips

敏捷开发

架构师训练营第一周作业

爱码士

架构设计

为什么说容器的崛起预示着云原生时代到来?

华为云开发者联盟

容器 云原生

了解HashMap数据结构,超详细!

程序员的时光

面试 hashmap HashMap底层原理

MyBatis-技术专题-动态SQL

码界西柚

不会java的人能不能读《Head First设计模式》?

Nydia

大数据上手实战!训练营“9营齐开”第二季限时免费报名啦

Apache Flink

大数据

LeetCode题解:50. Pow(x, n),暴力法,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

Java高并发编程的一本百科全书《Java高并发编程详解:多线程与架构设计》,把Java语言中最为晦涩的知识点都详解出来了!

Java架构之路

Java 程序员 架构 并发编程 编程语言

1分钟带你入门 React SCU、memo、pureCom

Leo

react.js 大前端 React

笔记本中的“全优生”,英特尔Evo产品上市首日秒光!

E科讯

1024!奈学教育致敬程序员3+2战略发布会重磅来袭

古月木易

程序员 奈学教育

想自己写框架?不会写Java注解可不行

Java架构师迁哥

网易:Flink + Iceberg 数据湖探索与实践

Apache Flink

flink 数据湖

架构师训练营培训第一周总结

lakers

极客大学架构师训练营

华为云如何赋能无人车飞驰?从这群AI热血少年谈起

华为云开发者联盟

人工智能 无人驾驶

一周信创舆情观察(10.12~10.18)

统小信uos

阿里18道常见的MySQL面试题,含解析

Java架构师迁哥

项目吐槽之需求分析二

Geek_XOXO

项目管理 pmp 项目实战

作为一名Java程序员,技术栈的广度深度都不够还想要高薪?请先把这些技术掌握再说。

Java架构之路

Java 程序员 架构 面试 编程语言

第五周学习代码技术选型总结

三板斧

极客大学架构师训练营

强化学习在推荐算法的应用论文整理(一)_语言 & 开发_Alex-zhai_InfoQ精选文章