写点什么

如何使用半监督学习为结构化数据训练出更好的深度学习模型

  • 2020-10-22
  • 本文字数:2368 字

    阅读完需:约 8 分钟

如何使用半监督学习为结构化数据训练出更好的深度学习模型

本文最初发表于 Towards Data Science 博客,经原作者 Youness Mansar 授权,InfoQ 中文站翻译并分享。


众所周知,深度学习在应用于文本、音频或图像等非结构化数据时效果很好,但在应用于结构化或表格化数据时,深度学习有时会落后于其他机器学习方法,如梯度提升等。在本文中,我们将使用半监督学习来提高深度神经模型在低数据环境下应用于结构化数据时的性能。我们将展示通过使用无监督的预训练,可以使神经模型的性能优于梯度提升。


本文是基于以下两篇论文:



我们实现了一个类似于 AutoInt 论文中提出的深度神经结构,使用了多头自注意力和特征嵌入。预训练部分取自 TabNet 的论文。

方法说明

我们将处理结构化数据,这意味着可以将数据写成具有列(数字、分类、序号)和行的表。我们还假设我们有大量的未标记样本,可以用于预训练,以及少量的标记样本,可用于监督学习。在接下来的实验中,我们将模拟这个环境来绘制学习曲线,并在使用不同大小的标记集时对该方法进行评估。

数据准备

让我们用一个例子来描述在将数据提供给神经网络之前我们是如何准备数据的。



在这个例子中,我们有三个样本和三个特征 {F1,F2,F3} 和一个目标。F1 是分类特征,而 F2 F3 是数字特征。


我们将为 F1 的每个模态 X 创建一个新特征 F1_X,如果 F1==X,则为其赋值 1,否则等于 0。


转换后的样本将写入一组 (Feature_Name, Feature_Value)


例如:


第一个样本 → {(F1_A, 1), (F2, 0.3), (F3, 1.3)}


第二个样本 → {(F1_B, 1), (F2, 0.4), (F3, 0.9)}


第三个样本 → {(F1_C, 1), (F2, 0.1), (F3, 0.8)}


特征名称将被馈送到嵌入层,然后与特征值相乘。

模型:

这里使用的模型是一个多头注意力块序列和逐点前馈层。在训练时,我们也使用池化的注意力跳过连接。多头注意力模块允许我们对特征之间可能存在的交互进行建模,而池化的注意力跳过连接允许我们从一组特征嵌入中获得单个向量。


预训练

在预训练步骤中,我们使用完整的未标记数据集,输入特征的损坏版本,并训练模型来预测未损坏的特征,类似于在去噪自动编码器中所做的操作。

监督式训练

在训练的监督部分,我们在编码器部分和输出端之间添加跳过连接,并尝试预测目标。


实验

在接下来的实验中,我们将使用四个数据集,其中两个用于回归,两个用于分类。


  • Sarco:有大约 5 万个样本,21 个特征和 7 个连续目标。

  • Online News:有 4 万个左右的样本,61 个特征和 1 个连续目标。

  • Adult Census:有大约 4 万个样本、15 个特征和 1 个二元目标。

  • Forest Cover:有大约 50 万个样本,54 个特征和 1 个分类目标。


我们将比较一个预训练神经模型和一个从零开始训练的神经模型,将重点关注地数据状态下的性能,这意味着几百到几千个标记样本。我们还将于一个流行的名为lightgbm的梯度提升实现进行比较。

Forest Cover:

Adult Census:


对于这个数据集,我们可以看到,如果训练集小于 2000,那么预训练是非常有效的。

Online News:

对于 Online News 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小为 500 或更大的情况下都超过了梯度提升。



对于 Sarco 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小的情况下超过了梯度提升。


旁注:用于重现结果的代码

重现结果的代码可以在这里找到:


https://github.com/CVxTz/DeepTabular


使用这段代码,你可以很轻松地训练分类或回归模型:


import pandas as pdfrom sklearn.model_selection import train_test_splitfrom deeptabular.deeptabular import DeepTabularClassifierif __name__ == "__main__":data = pd.read_csv("../data/census/adult.csv")train, test = train_test_split(data, test_size=0.2, random_state=1337)target = "income"num_cols = ["age", "fnlwgt", "capital.gain", "capital.loss", "hours.per.week"]cat_cols = ["workclass","education","education.num","marital.status","occupation","relationship","race","sex","native.country",]for k in num_cols:mean = train[k].mean()std = train[k].std()train[k] = (train[k] - mean) / stdtest[k] = (test[k] - mean) / stdtrain[target] = train[target].map({"<=50K": 0, ">50K": 1})test[target] = test[target].map({"<=50K": 0, ">50K": 1})classifier = DeepTabularClassifier(num_layers=10, cat_cols=cat_cols, num_cols=num_cols, n_targets=1,)classifier.fit(train, target_col=target, epochs=128)pred = classifier.predict(test)classifier.save_config("census_config.json")classifier.save_weigts("census_weights.h5")new_classifier = DeepTabularClassifier()new_classifier.load_config("census_config.json")new_classifier.load_weights("census_weights.h5")new_pred = new_classifier.predict(test)
复制代码

结论

在计算机视觉或自然语言领域,无监督预训练可以提高神经网络的性能。在本文中,我们展示了它在应用于结构化数据时也能起作用,使其在低数据环境与其他机器学习方法(如梯度提升)具有竞争力。


作者简介:


Youness Mansar,供职于 Fortia Financial Solutions 的数据科学家。巴黎中央理工学院(Ecole Centrale Paris)应用数学硕士学位和巴黎-萨克雷高等师范学校(École normale supérieure Paris-Saclay)机器学习硕士。作为 Fortia 的数据科学家,曾参与过多个涉及自然语言处理和深度学习的项目。


原文链接:


https://towardsdatascience.com/training-better-deep-learning-models-for-structured-data-using-semi-supervised-learning-8acc3b536319


2020-10-22 09:001933
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 532.0 次阅读, 收获喜欢 1975 次。

关注

评论

发布
暂无评论
发现更多内容

华为云张昆:支持全场景全业务,GaussDB加速企业数字化转型

华为云开发者联盟

数据库

阿里开发7年大牛:闭关60天学懂NDK+Flutter,大厂面试题汇总

欢喜学安卓

android 程序员 面试 移动开发

week8-homework

J

重学JS | 异步编程 Promise

梁龙先森

大前端 编程语言 28天写作

Spring中@Import的作用

张健

用技术的方式,在UI设计稿中设置随机码,保证高清

行者AI

Python

安卓开发详解!Flutter全方位深入探索,吊打面试官系列!

欢喜学安卓

android 程序员 面试 移动开发

Alluxio Day 2021 线上直播

腾讯云大数据

大数据

程序员的五年:双非学历,两年进入苏宁,五年跳槽到阿里,建议收藏!

996小迁

Java 架构 面试 JVM Spring全家桶

区块链即时通讯系统开发方案,IM聊天社交软件开发

v16629866266

专科出身Java开发,2年进入苏宁,5年跳槽阿里,我晋升这么快的秘诀是什么?

Java架构追梦

Java 阿里巴巴 面试 架构师 成长路线

波场链智能合约软件开发|波场链智能合约APP系统开发

系统开发

CSS12 - 清除浮动

Mr.Cactus

html/css

Mobileye的创新科技与方案将助力自动驾驶汽车畅行世界、惠及大众

E科讯

SpringCloud 从入门到精通 08--- Eureka集群

Felix

即构推出低延迟直播产品L3,可将直播延迟降到1s

ZEGO即构

再谈跨界 互联网+的建筑行业

张老蔫

28天写作

SpringCloud 从入门到精通 09--- 支付服务集群

Felix

真是太刺激了!美团CTO五轮面试,Java岗高级工程师一二三四五面面经(已拿到offer)

Java架构之路

Java 程序员 架构 面试 编程语言

毕业三年,从小公司到大厂,先后四面阿里、小米、美团等,终于收到offer!

Java架构之路

Java 程序员 架构 面试 编程语言

【设计模式】断路器模式

soolaugust

设计模式 28天写作

第九周作业

dll

WireMock 使用

hungxy

测试 WireMock

面向对象之魔术方法· 第1篇《__init__方法,__new__方法》

清菡软件测试

测试

求职阿里Java 技术岗位的经历,三轮技术面+HR面,面试也不过如此

Java架构之路

Java 程序员 架构 面试 编程语言

从根上理解高性能、高并发(四):深入操作系统,彻底理解同步与异步

JackJiang

网络编程 高并发 高性能 即时通讯

sync.singleflight 到底怎么用才对?

cyningsun

并发 Concurrency singleflight Cache Miss Go 语言

对于我们程序员来说,基本面是什么呢?

Java架构师迁哥

Dubbo 版 Swagger 来啦!Dubbo-Api-Docs 发布

阿里巴巴云原生

Java 云原生 dubbo 大前端 中间件

量化自动交易系统开发,量化炒币

薇電13242772558

数字货币 策略模式

连续三年蝉联第一,Flink 荣膺全球最活跃的 Apache 开源项目

Apache Flink

Apache flink

如何使用半监督学习为结构化数据训练出更好的深度学习模型_AI&大模型_Youness Mansar_InfoQ精选文章