写点什么

如何使用半监督学习为结构化数据训练出更好的深度学习模型

  • 2020-10-22
  • 本文字数:2368 字

    阅读完需:约 8 分钟

如何使用半监督学习为结构化数据训练出更好的深度学习模型

本文最初发表于 Towards Data Science 博客,经原作者 Youness Mansar 授权,InfoQ 中文站翻译并分享。


众所周知,深度学习在应用于文本、音频或图像等非结构化数据时效果很好,但在应用于结构化或表格化数据时,深度学习有时会落后于其他机器学习方法,如梯度提升等。在本文中,我们将使用半监督学习来提高深度神经模型在低数据环境下应用于结构化数据时的性能。我们将展示通过使用无监督的预训练,可以使神经模型的性能优于梯度提升。


本文是基于以下两篇论文:



我们实现了一个类似于 AutoInt 论文中提出的深度神经结构,使用了多头自注意力和特征嵌入。预训练部分取自 TabNet 的论文。

方法说明

我们将处理结构化数据,这意味着可以将数据写成具有列(数字、分类、序号)和行的表。我们还假设我们有大量的未标记样本,可以用于预训练,以及少量的标记样本,可用于监督学习。在接下来的实验中,我们将模拟这个环境来绘制学习曲线,并在使用不同大小的标记集时对该方法进行评估。

数据准备

让我们用一个例子来描述在将数据提供给神经网络之前我们是如何准备数据的。



在这个例子中,我们有三个样本和三个特征 {F1,F2,F3} 和一个目标。F1 是分类特征,而 F2 F3 是数字特征。


我们将为 F1 的每个模态 X 创建一个新特征 F1_X,如果 F1==X,则为其赋值 1,否则等于 0。


转换后的样本将写入一组 (Feature_Name, Feature_Value)


例如:


第一个样本 → {(F1_A, 1), (F2, 0.3), (F3, 1.3)}


第二个样本 → {(F1_B, 1), (F2, 0.4), (F3, 0.9)}


第三个样本 → {(F1_C, 1), (F2, 0.1), (F3, 0.8)}


特征名称将被馈送到嵌入层,然后与特征值相乘。

模型:

这里使用的模型是一个多头注意力块序列和逐点前馈层。在训练时,我们也使用池化的注意力跳过连接。多头注意力模块允许我们对特征之间可能存在的交互进行建模,而池化的注意力跳过连接允许我们从一组特征嵌入中获得单个向量。


预训练

在预训练步骤中,我们使用完整的未标记数据集,输入特征的损坏版本,并训练模型来预测未损坏的特征,类似于在去噪自动编码器中所做的操作。

监督式训练

在训练的监督部分,我们在编码器部分和输出端之间添加跳过连接,并尝试预测目标。


实验

在接下来的实验中,我们将使用四个数据集,其中两个用于回归,两个用于分类。


  • Sarco:有大约 5 万个样本,21 个特征和 7 个连续目标。

  • Online News:有 4 万个左右的样本,61 个特征和 1 个连续目标。

  • Adult Census:有大约 4 万个样本、15 个特征和 1 个二元目标。

  • Forest Cover:有大约 50 万个样本,54 个特征和 1 个分类目标。


我们将比较一个预训练神经模型和一个从零开始训练的神经模型,将重点关注地数据状态下的性能,这意味着几百到几千个标记样本。我们还将于一个流行的名为lightgbm的梯度提升实现进行比较。

Forest Cover:

Adult Census:


对于这个数据集,我们可以看到,如果训练集小于 2000,那么预训练是非常有效的。

Online News:

对于 Online News 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小为 500 或更大的情况下都超过了梯度提升。



对于 Sarco 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小的情况下超过了梯度提升。


旁注:用于重现结果的代码

重现结果的代码可以在这里找到:


https://github.com/CVxTz/DeepTabular


使用这段代码,你可以很轻松地训练分类或回归模型:


import pandas as pdfrom sklearn.model_selection import train_test_splitfrom deeptabular.deeptabular import DeepTabularClassifierif __name__ == "__main__":data = pd.read_csv("../data/census/adult.csv")train, test = train_test_split(data, test_size=0.2, random_state=1337)target = "income"num_cols = ["age", "fnlwgt", "capital.gain", "capital.loss", "hours.per.week"]cat_cols = ["workclass","education","education.num","marital.status","occupation","relationship","race","sex","native.country",]for k in num_cols:mean = train[k].mean()std = train[k].std()train[k] = (train[k] - mean) / stdtest[k] = (test[k] - mean) / stdtrain[target] = train[target].map({"<=50K": 0, ">50K": 1})test[target] = test[target].map({"<=50K": 0, ">50K": 1})classifier = DeepTabularClassifier(num_layers=10, cat_cols=cat_cols, num_cols=num_cols, n_targets=1,)classifier.fit(train, target_col=target, epochs=128)pred = classifier.predict(test)classifier.save_config("census_config.json")classifier.save_weigts("census_weights.h5")new_classifier = DeepTabularClassifier()new_classifier.load_config("census_config.json")new_classifier.load_weights("census_weights.h5")new_pred = new_classifier.predict(test)
复制代码

结论

在计算机视觉或自然语言领域,无监督预训练可以提高神经网络的性能。在本文中,我们展示了它在应用于结构化数据时也能起作用,使其在低数据环境与其他机器学习方法(如梯度提升)具有竞争力。


作者简介:


Youness Mansar,供职于 Fortia Financial Solutions 的数据科学家。巴黎中央理工学院(Ecole Centrale Paris)应用数学硕士学位和巴黎-萨克雷高等师范学校(École normale supérieure Paris-Saclay)机器学习硕士。作为 Fortia 的数据科学家,曾参与过多个涉及自然语言处理和深度学习的项目。


原文链接:


https://towardsdatascience.com/training-better-deep-learning-models-for-structured-data-using-semi-supervised-learning-8acc3b536319


2020-10-22 09:002083
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 545.5 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

华为亮相OpenInfra Days China 2023,分享开源基础设施的实践和技术展望

彭飞

“粤”见昇腾AI,昇腾AI开发者创享日·广州站即将开启

彭飞

Logii 指纹浏览器中如何设置代理

Geek_bf375d

爬虫 IP 代理IP 代理IP设置 #HTTP

香橙派联合华为发布全新Orange Pi AIpro 开发板,起售价799元

彭飞

智能联动第三方告警中心,完美实现故障响应全闭环

观测云

人工智能 监控 智能告警

JNPF低代码开发平台高效赋能开发者

互联网工科生

开发者工具 低代码开发 JNPF

又添三位“信伙伴”,亚信安慧AntDB数据库与南京一鸣、广东鸿数、北京数见完成兼容互认

亚信AntDB数据库

数据库 AntDB AntDB数据库

释放潜能:IT外包服务对业务增长的强大推动

Ogcloud

外包 IT 外包公司 外包项目 IT 运维

数据挖掘与低代码开发应用:加速业务创新的黄金组合

快乐非自愿限量之名

数据挖掘 低代码 数据应用

AI 辅助编程后,主流开发方式都有哪些变化?

代码生成器研究

终于,AWS Aurora 也走向了融合架构,这一次阿里云 PolarDB-X 确实遥遥领先

小猿姐

数据库 阿里云 AWS

FFA 2023 专场解读:AI 特征工程、数据集成

Apache Flink

大数据 flink 实时计算

阿里巴巴中国站按关键字搜索商品 API 的调用频率限制是多少?

技术冰糖葫芦

API 开发

程序员世界破破烂烂,低代码总在缝缝补补

伤感汤姆布利柏

Java Vue 前端 低代码

现在好用的零代码开发平台或者低代码开发平台有哪些?

代码生成器研究

为什么要做ERP集成?ERP系统如何与其他业务应用程序集成

RestCloud

ETL ERP

热点浅谈:低代码开发平台是什么?低代码具备什么特点?

代码生成器研究

除了Trello软件,这4款项目管理看板也值得推荐!

彭宏豪95

项目管理 科技 在线白板 效率软件 看板工具

FFA 2023 「生产实践」专场:Flink 大规模技术优化与生产实践

Apache Flink

大数据 flink 实时计算

从HumanEval到CoderEval: 你的代码生成模型真的work吗?

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 代码生成大模型

如何转行互联网?

代码生成器研究

低代码如何降低门槛、快速交付、实现可持续IT架构?

树上有只程序猿

软件开发 低代码平台 JNPF

当代程序员的一天怎么过?

代码生成器研究

直播预约|FFA 2023 主会场,12 月 8 日正式上线!

Apache Flink

flink

IT外包服务广泛应用于哪些行业?

Ogcloud

外包 IT 外包公司 外包项目 IT 运维

如何在VMMask指纹浏览器中设置代理

Geek_bf375d

爬虫 IP 代理IP 跨境电商 #HTTP

FFA 2023 专场解读:流批一体&平台建设&云原生

Apache Flink

大数据 flink 实时计算

想转行学计算机,但现在听说互联网裁员太严重?

代码生成器研究

如何使用半监督学习为结构化数据训练出更好的深度学习模型_AI&大模型_Youness Mansar_InfoQ精选文章