AICon上海|与字节、阿里、腾讯等企业共同探索Agent 时代的落地应用 了解详情
写点什么

不要再让数据科学家管理 Kubernetes 集群了

  • 2020-02-21
  • 本文字数:2143 字

    阅读完需:约 7 分钟

不要再让数据科学家管理Kubernetes集群了

本文内容基于我对机器学习团队的观察,而不是对该行业的学术调查。我是Cortex的贡献者,这是一个用于在生产环境中部署模型的开源平台。生产级机器学习有一个组织性的问题,这是因为它相对还比较新。虽然更成熟的领域(例如 Web 开发)经过几十年的发展已经有了最佳实践,但是生产级机器学习还没有。如果我们希望未来以 ML 为基础的软件真正普及开来,那么消除基础设施瓶颈就至关重要——要做到这一点,我们需要将其真正的专门化,让数据科学家专注于数据科学。


本文最初发布于 Towards Data Science 博客,经原作者授权由 InfoQ 中文站翻译并分享。


声明:以下内容基于我对机器学习团队的观察,而不是对该行业的学术调查。我的背景:我是Cortex的贡献者,这是一个用于在生产环境中部署模型的开源平台。


生产级机器学习有一个组织性的问题,这是因为它相对还比较新。虽然更成熟的领域(例如 Web 开发)经过几十年的发展已经有了最佳实践,但是生产级机器学习还没有。


举个例子,假设你的任务是为你所在的初创公司组建一个产品工程组织,而这家公司是一个开发 Web 应用程序的公司。即使你没有组建团队的经验,你也可以找到成千上万的文章和书籍,它们会告诉你这个工程组织应该采用什么结构以及如何发展。


现在想象一下,你在一家刚刚开始涉足机器学习的公司。你已经聘请了一名数据科学家来领导最初的工作,结果也不错。随着机器学习在产品中的应用越来越深入,随着数据科学家的职责迅速增加,机器学习团队显然需要发展壮大。


在这种情况下,并没有那么多关于如何构建一个生产级机器学习团队的文章和书籍。


这不是一个不常见的场景,经常出现的情况是,机器学习组织的新职责—特别是基础设施—被分配给了数据科学家。


这是个错误。

机器学习和机器学习基础设施的区别

在这一点上,平台和产品工程师的区别已经很好理解了。类似地,数据分析师和数据工程师显然是不同的角色。


许多公司的机器学习仍然缺乏这种专业化。


了解机器学习和机器学习基础设施之间的区别很重要,这有助于了解它们所需的工作和工具。


为了设计和训练新模型,数据科学家需要:


  • 把时间花在 Notebook、分析数据、做实验上。

  • 考虑类似数据保健和为数据集选择正确的模型架构这样的问题。

  • 使用 Python、R、Swift 或 Julia 等编程语言。

  • 对像 PyTorch 或 TensorFlow 这样的机器学习框架有自己的见解。


换句话说,他们的职责、技能和工具将围绕着操纵数据开发模型,他们的最终输出将是可以提供最准确预测的模型。


基础设施方面则完全不同。


将模型投入生产应用的一种常见方法是将其作为微服务部署到云中。要将模型部署为生产用 API,工程师需要:


  • 在配置文件、终端和云提供商的控制台之间分配他们的时间,设法优化稳定性、延迟和成本。

  • 考虑实例的自动扩展、在 API 不崩溃的情况下更新模型以及在 GPU 上提供推断服务等问题。

  • 使用 Docker、Kubernetes、Istio、Flask 等工具,以及他们的云提供商提供的任何服务/API。


关于机器学习和机器学习基础设施方面的工作,下面是一个简单的可视化:



机器学习 vs 机器学习基础设施


直观地说,数据科学家应该处理左边的圆,而不是右边的圆,这是有道理的。


让非专业人员管理基础设施有什么问题吗?


我们不妨做个假设。假设你必须指派某人来管理你的机器学习基础设施,但是你又不想让某人全职参与其中。你只有两个选择:


  • 一个是数据科学家,因为他们熟悉机器学习。

  • 一个是 DevOps 工程师,因为他们熟悉一般的基础设施。


这两种选择都有问题。


首先,数据科学家应该尽可能多的把时间花在他们最擅长的数据科学上。当然,这并不是说学习基础设施超出了他们的工作范围,只是基础设施和数据科学都是全职工作,将数据科学家的时间分配到这两项工作中会降低产出的质量。


其次,你的组织需要专门负责机器学习基础设施的人员。在生产环境中提供模型服务不同于托管 Web 应用程序。你需要一个专门的人来担任此角色,他可以在组织中倡导机器学习基础设施。


这种倡导是至关重要的。我了解了很多机器学习组织,你会惊讶地发现,他们的瓶颈往往不是来自技术性挑战,而是来自组织性挑战。


例如,我曾见过需要使用 GPU 进行推理的机器学习团队——像GPT-2这样的大型模型基本上都要求合理的延迟时间——但他们却无法获得 GPU,因为他们的基础设施是由更广泛的 DevOps 团队管理的,而这些团队不想让自己承担成本。


有专人致力于你的机器学习基础设施,意味着你不仅有一个不断改进基础设施的团队成员,还意味着你有一个能够满足你的团队需求的倡导者。

那么谁应该管理基础设施?

机器学习基础设施工程师。


现在,不要对这种官方的头衔有异议,要知道,机器学习还处于初级阶段,在头衔问题上,它还属于“狂野的西部”。不同的公司可能会有不同的叫法:


  • 机器学习基础设施工程师

  • 数据科学平台工程师

  • ML 生产工程师


我们已经可以看到成熟的机器学习组织招聘这个职位,包括 Spotify:



还有 Netflix:



随着诸如 Gmail 的 Smart Compose、Uber 的 ETA 预测和 Netflix 的内容推荐等基于 ML 的功能在软件中的应用越来越普遍,机器学习基础设施变得越来越重要。


如果我们希望未来以 ML 为基础的软件真正普及开来,那么消除基础设施瓶颈就至关重要——要做到这一点,我们需要将其真正的专门化,让数据科学家专注于数据科学。


英文原文:Stop making data scientists manage Kubernetes clusters


2020-02-21 08:001447

评论

发布
暂无评论
发现更多内容

字节跳动Dev Better技术沙龙成功举办,携手华泰分享Web研发效能提升经验

字节跳动终端技术

字节跳动 前端

英特尔集成光电研究最新进展推动共封装光学和光互连技术进步

科技之家

什么是低代码开发?

AIRIOT

低代码 物联网 低代码,项目开发

同事悄悄告诉我,飞书通知还能这样玩

Jianmu

自动化 建木CI 飞书通知 定时

输入的查询SQL语句,是如何执行的?

华为云开发者联盟

MySQL sql 开发 语句

图像检索(image retrieval)

Geek_e369a5

图像搜索 图像检索

Numpy 的仿制 2

祖维

c slice Numpy

第十八届IET交直流输电国际会议(ACDC2022)于线上成功举办

E科讯

DataKit——真正的统一可观测性 Agent

观测云

智捷云——元宇宙综合解决方案服务商

智捷云

区块链 元宇宙 智捷云 区块链技术开发

你可能不知道,我是如何将一个老系统的kafka消费者服务的性能提升近百倍的

Java全栈架构师

Java kafka 程序员 面试 架构设计

LeetCode-168. Excel表列名称(java)

bug菌

LeetCode 7月月更

TCP两次挥手,你见过吗?那四次握手呢?

C++后台开发

网络编程 网络协议 TCP/IP 后端开发 C++开发

激进技术派 vs 项目保守派的微服务架构之争

BoCloud博云

微服务 微服务架构 云原生 istio 服务网格

被忽视的问题:测试环境配置管理

老张

软件测试 测试环境治理

LeaRun.Java快速开发平台 高效代码自动化生成

力软低代码开发平台

能源行业的数字化“新”运维

博睿数据

AIOPS 智能运维 博睿数据 能源行业

太方便了,钉钉上就可完成代码发布审批啦!

阿里云云效

云计算 阿里云 钉钉 jenkins 代码

OPPO 小布预训练大模型揭秘:可大规模工业化应用的十亿级模型

OPPO小布助手

AI 智能助手 预训练模型 预训练

Python 入门指南之使用 Python 解释器

海拥(haiyong.site)

7月月更

linux实战清理挖矿病毒kthreaddi

入门小站

Linux

一加10 Pro和iPhone 13怎么选?

Geek_8a195c

uni-app与uviewUI实现仿小米商城app(附源码)

优秀的李

小程序 uniapp 7月月更 uviewui

Nebula Importer 数据导入实践

NebulaGraph

图数据库 数据导入 Nebula Graph

DeFi生态NFT流动性挖矿系统开发搭建

薇電13242772558

NFT DeFi流动性挖矿

整理混乱的头文件,我用include what you use

华为云开发者联盟

c++ 开发 C语言 技能

五千字讲清楚团队自组织建设 | Liga 妙谈

LigaAI

团队管理 个人提升 敏捷开发管理 LigaAI 自组织协作

华为云ModelArts的使用教程(附详细图解)

逝缘~

华为 华为云 7月月更

NBA赛事直播超清画质背后:阿里云视频云「窄带高清2.0」技术深度解读

阿里云CloudImagine

音视频 直播 视频编码

PingCode 性能测试之负载测试实践

PingCode研发中心

软件测试 PingCode

【Unity UGUI】ScrollRect 动态缩放格子大小,自动定位到中间的格子

萧然🐳

游戏开发 Unity ScrollView 7月月更 UGUI

不要再让数据科学家管理Kubernetes集群了_AI&大模型_Caleb Kaiser_InfoQ精选文章