产品战略专家梁宁确认出席AICon北京站,分享AI时代下的商业逻辑与产品需求 了解详情
写点什么

“为什么说大模型可能是软件开发的死胡同?”

  • 2024-11-21
    北京
  • 本文字数:2042 字

    阅读完需:约 7 分钟

大小:1005.16K时长:05:43
“为什么说大模型可能是软件开发的死胡同?”

虽然“Does current AI represent a dead end?”这篇文章意在引发讨论,但其中的某些观点对软件开发人员来说特别具有相关性:

 

“当前的 AI 系统缺乏与其功能紧密相关的内部结构,无法作为组件进行开发或重用,也无法进行关注点分离或分阶段开发。”

 

本文仅讨论如何将大语言模型(LLM)作为产品解决方案的一部分,而非探讨如何在开发过程中使用 AI 工具(例如,Cursor 和 Zed AI 这样的 AI 编码工具)。尽管借助 LLM 进行特定的软件开发生命周期活动(SDLA)确实面临着一些挑战,但我们开发产品的方式与最终卖给客户的产品通常是有所区别的。因此,在下面的图表中,我们关注的是上面两个部分:

 


来自卡内基梅隆大学软件工程研究所的图片

 

当前 LLM 面临的问题在于它们像汽车一样被出售——用户需要为整个产品付费,而不能指望将它们作为可组合模块的一部分。汽车的不可分解性不是问题,因为驾驶是一项受到严格控制的活动。即便你能够像乐高积木一样将汽车组装起来,它也不会被允许上路。

 

这大概正是大型科技公司所期望的——他们希望卖给你一个完整的产品或服务,而不是一系列可以轻松被他人进行构建的可组合部件。保持 LLM 的神秘感有助于维持其高价值地位。

 

LLM 的运作模式违背了计算领域的一个基本原则,即任务应当可以被分解。

 

这违背了计算领域的一个基本原则,即任务应当可以被分解。一个高效的软件组件,无论是自行开发还是外部采购,都应由可进行单元测试的代码构成。这些组件必须能够与其他组件可靠地协同工作。

 

即便某个产品采用了 Oracle 数据库,我们依然能够明白在概念设计层面上是存在数据持久化的。在决定使用哪种类型的存储技术时,测试机制已经准备就绪了。同时,数据库技术在不断创新,但客户永远不会认为存储厂商在某种程度上控制了软件。

 

在学术界,可分解性的缺失往往与可解释性的缺失相伴而生。我们可以归纳出其他与 LLM 在交付软件中的商业问题相关的因素。

 

我们无法将 LLM 的行为与训练数据分离。

 

目前,我们无法将 LLM 的行为与训练数据分离。我们知道 LLM 是经过训练的,但训练过程通常是不公开的,而结果却被期望能够被“原封不动”地接受。这种对组件“腌制”的期望在烹饪中或许可行,但在软件组件开发中却并不适用。

 

安全和隐私问题成为关注点,因为我们缺乏可靠的途径或方法来防止 LLM 泄露某些敏感信息。我们无法从外部干预神经网络,向它解释哪些信息是私密的,哪些不应该被泄露。

 

法律所有权问题依然很棘手。我们可以证明冷计算的操作结果是可重复的,在输入相同的情况下会得出相同的答案。然而,由于 LLM 携带着无法摆脱的训练“包袱”,我们根本无法证明它们没有侵犯现有的知识产权——而实际上,它们很可能已经侵犯了。

 

那些致力于减少碳足迹的公司正朝着与 LLM 厂商相反的方向前进,而 LLM 厂商需要惊人的计算资源来获得递减的性能改进。

 

本文并不是要讨论如何使用 LLM 来辅助开发,也不是关于向终端用户提供 LLM 工具。我使用的文本编辑器内置了某些形式的 AI 功能,但这些操作没有任何保障。我们都知道这些通常是走过场的功能——某些必须出现在产品中的“噱头”,而并非核心组成部分。

 

我认为 LLM 作为服务被引入产品的前景不大,除非 LLM 本身就是产品。

 

鉴于前面提到的原因,我认为 LLM 作为服务被引入产品的前景不大,除非它本身就是产品。但即便如此,这对任何企业来说都是一个巨大的陷阱。当 Zoom 创始人 Eric Yuan 提出在 Zoom 中引入 AI 替身代替与会者参加会议的想法时,理所当然地遭到了嘲笑,他认为这种能力会在“技术栈的底层”自然而然地出现。将重大创新外包给了 LLM 厂商,实际上是将自己的产品路线图交给了另一家公司掌控。

 

软件开发人员应该如何应对

 

那么,软件开发人员应该如何应对?我们都明白,一个组件应该有明确的职责,应该能够被替换,并且能够与其他组件一起被测试。如果是外部组件,也应当遵循相同的计算标准——而且我们应该能够依据这些标准来重新构建它们。

 

我们不应因追求短期的热度而轻易改变游戏规则。关键在于要设计一个能够为企业提供所需功能的流程,然后开发一个平台,以可持续的方式让开发人员进行构建。

 

作为开发人员,我们应当保持开放的态度,拥抱真正可解释、可测试的 AI。

 

作为开发人员,我们应当保持开放的态度,拥抱真正可解释、可测试的 AI。如果涉及训练过程,这个过程应当是可监控、可报告、可重复、可解释且可逆的。如果我们发现 LLM 认为某件事是真实的,而实际并非如此,那么必须能够通过一系列明确的步骤迅速进行修正。如果这样的描述没有意义,那么目前基于 LLM 的计算也同样没有意义。但理论上,我看不出为什么未来不能改变这一现状。

 

我担心的是,这种差异就像是科学与圣物信仰之间的对比。我们可以进行一系列不可行的实验(如果将圣物切成几块,这些碎片是否依然保持其神圣性?),但不应该期望这两个领域会有任何融合的可能性。

 

声明:本文由 InfoQ 翻译,未经许可禁止转载。

 

原文链接:

https://thenewstack.io/why-llms-within-software-development-may-be-a-dead-end/

2024-11-21 16:574

评论

发布
暂无评论

如何突破职业瓶颈

FunTester

Go 性能测试 测试框架 FunTester 职业瓶颈

高新技术企业几维科技加入龙蜥,为操作系统安全添砖加瓦

OpenAnolis小助手

Linux 开源

服务探活的五种方式

捉虫大师

微服务 dubbo 健康检查 服务探活

Tech Talk 活动预告|“公有云+5G” 时代下的开发难题,架构师大咖带你逐个击破!

亚马逊云科技 (Amazon Web Services)

网络

如何提高后台服务应用问题的排查效率?日志 VS 远程调试

汪子熙

node.js 后台开发 1月月更

低代码实现探索(十三)字典.静态实体.系统变量

零道云-混合式低代码平台

盘点 | 常用 PG 数据恢复方案概览【建议收藏】

RadonDB

数据库 postgresql RadonDB

2022年,跨境ERP还是一门好生意吗?

ToB行业头条

APP性能分析工作台——你的最佳桌面端性能分析助手

字节跳动终端技术

字节跳动 APM Mars 应用性能监控产品

百度搜索中台新一代内容架构:FaaS化和智能化实战

百度Geek说

架构 后端 搜索 Faas

近数据处理(NDP)——GaussDB(for MySQL)性能提升的秘密

华为云开发者联盟

MySQL 多线程 GaussDB(for MySQL) 近数据处理 算子下推

AWS Command Line Interface 使用S3入门

阿呆

AWS S3

万字总结Keras深度学习中文文本分类

华为云开发者联盟

深度学习 CNN keras 文本分类 TextCNN

2021中国开源先锋33人榜单出炉:华为三位开源专家入选

科技热闻

强化云原生基础服务,焱融科技 YRCloudFile 与秒云完成产品兼容性互认证

焱融科技

云计算 分布式 云原生 高性能 文件存储

关于dart中的late关键字,你了解多少?

坚果

flutter dart 1月月更

一文了解登陆Hoo虎符的Moonbeam治理通证GLMR

区块链前沿News

Hoo 虎符交易所 Moonbeam GLMR

TCP socket和web socket的区别

汪子熙

前端 node,js 1月月更

大咖眼中的AI开源|王敏捷:深图在人工智能中的探索和研究

亚马逊云科技 (Amazon Web Services)

网络

java开发之SpringBoot转发和重定向

@零度

JAVA开发 springboot

研读网络安全法律法规,提升技术管理者 “法” 商

星环科技

开发者喜欢的“夜宵”是什么?揭秘开发者的独特“口味”

OceanBase 数据库

数据库 开源 新年 oceanbase 开发者大会

使用亚马逊云科技安全服务防御、检测和响应 Log4j 漏洞

亚马逊云科技 (Amazon Web Services)

网络

【前端】一文彻底学会Promise

恒生LIGHT云社区

JavaScript 前端 Promise

大数据开发之离线分析工具Hive

@零度

大数据 hive

尚硅谷《MySQL高级特性篇》教程发布

@零度

MySQL

🏆【Alibaba中间件技术系列】「RocketMQ技术专题」让我们一同来看看RocketMQ和Kafka索引设计

洛神灬殇

RocketMQ Alibaba Alibaba技术 1月月更

使用 KubeSphere 管理 Amazon EKS Anywhere 集群

亚马逊云科技 (Amazon Web Services)

网络

全面拆解携程云原生实践,打造智能弹性的云端酒店直连系统!

亚马逊云科技 (Amazon Web Services)

网络

大画 Spark :: 网络(2)-上篇-通过网络收取消息的过程

dclar

大数据 spark Spark 源码

The Data Way Vol.9|还不清楚商业化之于开源的价值?建议你看看这家公司

SphereEx

数据库 开源 播客 ShardingSphere SphereEx

“为什么说大模型可能是软件开发的死胡同?”_AI&大模型_David Eastman_InfoQ精选文章