写点什么

用机器学习分析流行音乐(一):数据收集和清理

  • 2020-08-10
  • 本文字数:1494 字

    阅读完需:约 5 分钟

用机器学习分析流行音乐(一):数据收集和清理

本文是该系列的第一部分,我将在本文中讲述如何收集流行音乐的数据并清理。 目前,全部代码已经放到了GitHub上


多年来,韩国流行音乐成为一种全球性现象,其流行程度让我感到惊讶。 所以,我决定用机器学习来分析韩国流行音乐,探索有趣的见解。 本文,我将阐述数据科学周期中的数据收集和数据清理阶段。

数据收集

为了找到数据集,我不得不在谷歌上进行了搜索,我发现了一个 Excel 文档,内含针对社交媒体和韩国流行音乐的调查,我觉得很有意思。数据集包含来自世界各地的 240 名韩国流行音乐歌迷,共有 22 个调查问题。


数据集链接:Ranman,Saanjana(2020):KPOP DATA.xlsx. figshare. Dataset.

数据清理

数据清理是重要的一步,因为需要为 EDA 和模型构建提供最干净的数据。如果放进去的是垃圾,那么从模型中得到的也是垃圾。


数据集可能有前导空格和尾随空格。因此,我决定使用函数来删除第一列的“Timestamp”,因为没有用处。


# function to remove the leading and trailing whtte space in the data frame def trim(dataset): # using .strip() to remove the leading and the trailing white spaces in each cell trim = lambda x: x.strip() if type(x) is str else x   return dataset.applymap(trim) 
复制代码


由于列名太长,我决定给它们提供代码名称,以简单地表示列名。



重命名列


接下来,检查数据集是否有空值。



检查空值


有三个列具有空值。首先,让我们检查只有一个空值的列。


我发现 life_chgmoney_src 中的空值是“ n/a ”,因此,我简单地将它们替换为字符串“ none ”。


对于 daily_MV_hr 列,我决定用平均值替换空值。处理空值有多种方法(删除行、分配唯一类或者运行回归模型来预测缺失值等),但我认为用平均值替换它们是最佳选择。


我取了 1 和 4 的平均值,也就是 2.5 小时,去掉了“hours”(小时)这个词。我注意到有些类别在范围内,所以为了简单起见,我取了这些范围的平均值,创建了一个特殊函数来处理这个问题。


# function to find the mean when some have ranges and others don't def split_mean(x): # split before and after the hyphen (-) split_num = x.split("-") if len(split_num) == 2:   return (float(split_num[0])+float(split_num[1]))/2   # those who aren't in the range   else:     return float(x) # apply the split_mean function to the "daily MV hours" column daily_mv = daily_mv.apply(lambda x: split_mean(x)) 
复制代码


该函数用来在一些有范围而另一些没有范围的情况下查找平均值。



清理 daily_MV_hr 列前后对比


我意识到这个数据集有点混乱。所以我重复了类似的步骤来清理每一列。


  • yr_listened ” 列




清理 yes_listened 列的过程


我将展示每个列的清理前后图片。


  • daily_usic_hr ” 列




DAILY_MUSIC_hr 清理前后




yr_merch_spent 清理前后


  • age



age 清理前后


  • fav-grp



原始列值



创建单独的列,以查找每个人喜欢的组数



BTS 与其他(多个)的单独列


  • nes_medium



原始列值



简化的列值


  • pursuit



原始列值



简化的列值


  • time_cons_yn



原始列值



简化的列值


  • life_chg



原始列值



简化的列值


  • pos_eff



原始列值



简化的列值


  • money_src



原始列



简化的列值


  • crazy_ev



原始列值



简化的列值


  • country



原始列值



简化的列值


至此,数据清理完成,我将清理过的数据帧保存为 CSV 文件,以供本教程的下一部分使用。



将清理后的数据帧保存到 CSV


在第二部分中,我将讨论本教程的探索性数据分析部分。


作者介绍


Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接:


https://towardsdatascience.com/analyzing-k-pop-using-machine-learning-part-1-data-collection-cleaning-4b407baf7bce


2020-08-10 11:362556

评论

发布
暂无评论
发现更多内容

如何优雅的对ILogger进行扩展并实现日志分类及追踪

多态丶

netcore 扩展 logger dotnetcore 结构化日志

流式湖仓增强,Hologres + Flink 构建企业级实时数仓

Apache Flink

ByConity 社区回顾|ByConity 和开发者们一起展望未来,携手共进!

字节跳动开源

大数据 开源 字节跳动 社区 回顾

打通商城与ERP系统,实现物料自动同步

聚道云软件连接器

案例分享

永不停止,永远在路上!MIAOYUN 2023年度回顾

MIAOYUN

2023年度回顾 2023年终总结 年度关键词 年度成绩单

提升源代码安全性的C#和Java深度混淆工具——IpaGuard

共话 AI for Science | 解放军总医院医学创新研究部刘晓莉:基于数据和知识驱动的临床预测模型的构建

ModelWhale

人工智能 机器学习 深度学习 预测模型 AI4S

云桌面如何推动建筑行业数字化转型?

青椒云云电脑

云桌面 云桌面厂家 云桌面解决方案

腾讯云ES RAG最佳实践:百行代码轻松实现帮助文档的智能问答

腾讯云大数据

ES

实录分享 | 央企大数据平台架构发展趋势与应用场景的介绍

Alluxio

人工智能 大数据 构架 Alluxio 央企

RetsCloud AppLink适用的场景有哪些?

谷云科技RestCloud

零代码 自动化集成 适用场景

2023年Gartner® DevOps平台魔力象限发布,Atlassian被评为“领导者”

龙智—DevSecOps解决方案

DevOps

海外直播专线:打通TikTok直播的畅通通道

Ogcloud

海外直播专线 Tik Tok直播 Tik Tok直播网络

共话 AI for Science | 中国自然资源航空物探遥感中心于峻川:“AI+遥感”技术地学应用实践与展望

ModelWhale

人工智能 机器学习 深度学习 AI4S

华为产品创新经验,帮你成为更好的产品创新者

学习 华为云

京东JD商品详情API:实时数据获取的实现

Noah

Mixtral 8X7B MoE模型基于PAI的微调部署实践

阿里云大数据AI技术

虚幻引擎nDisplay教程:如何同步nDisplay节点与Switchboard + Helix Core

龙智—DevSecOps解决方案

Jenkins入门知识:什么是Jenkins?以及它的历史与发展

龙智—DevSecOps解决方案

海外云手机助力企业拓展海外市场

Ogcloud

云手机 海外云手机

程序员一定要知道的限流大法:令牌桶算法

不在线第一只蜗牛

程序员 高并发 限流

解锁 AI 潜力 | 使用 GreptimeAI 深入观测 OpenAI 行为和用量

Greptime 格睿科技

数据库 LLM LLMOps

软件测试/测试开发/全日制/测试管理丨App 自动化测试的价值与体系

测试人

软件测试

电商新趋势:解析养号的必要性及海外云手机运用攻略

Ogcloud

云手机 海外云手机 跨境电商云手机

Atlassian版本选择趋势是上云还是本地部署?全面分析两个版本的特性

龙智—DevSecOps解决方案

DevSecOps Atlassian

京东商品详情API实现实时数据获取的Java代码示例

Noah

用机器学习分析流行音乐(一):数据收集和清理_架构_Jaemin Lee_InfoQ精选文章