写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031220

评论

发布
暂无评论
发现更多内容

ARTS 打卡第 1 周: Jackson如何自定义属性的序列化策略

前行

#Jackson #正则表达式 #IDEA高效使用技巧

从0开始学Java——抛出和声明异常的代码实现

java易二三

Java 程序员 计算机 科技

【直播合集】HDC.Together 2023 精彩回顾!收藏勿错过~

HarmonyOS开发者

HarmonyOS

软件测试 | 使用WebScarab观察实时的POST数据

测吧(北京)科技有限公司

测试

零代码搭建一个微信小程序

华为云开发者联盟

开发 华为云 华为云开发者联盟 企业号 8 月 PK 榜

SpringBoot3集成RocketMq

RocketMQ springboot SpringBoot3

分布式可视化 DAG 任务调度系统 Taier 的整体流程分析

袋鼠云数栈

大数据 开源 Taier

零信任体系化能力建设(2):设备风险与安全监控

权说安全

Seamless Roaming with IPQ6010 and IPQ6018: Elevating Industrial-Grade WiFi6 Solutions

wallyslilly

IPQ6010 ipq6018 IPQ6000

高级插图和绘图 VectorStyler for Mac激活包

mac大玩家j

Mac Mac 软件 绘图工具 绘画软件

软件测试 | 使用TamperData观察实时的响应头

测吧(北京)科技有限公司

测试

软件测试 | web跟踪元素属性

测吧(北京)科技有限公司

测试

数跨新阶,原生新纪 | 2023 数字化转型发展大会蓄力启航

信通院IOMM数字化转型团队

数字化转型 大会 IOMM 数字化转型峰会

直播平台开发协议分析篇(一):会话初始化协议SIP

山东布谷科技

软件开发 SIP 源码搭建 直播平台开发 会话初始化协议

[BitSail] Connector开发详解系列三:SourceReader

字节跳动数据平台

大数据 数据治理 数据研发 企业号 8 月 PK 榜

数据安全架构总结及案例分享

I

安全架构师 架构设计 数据安全 安全架构

mac端好用的Java开发分析 JProfiler 13 激活中文版附密钥

胖墩儿不胖y

Mac Mac 软件 Java开发分析工具 Java分析

CutLER:一种用于无监督目标检测和实例分割的方法

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号 8 月 PK 榜

注册与充值操作手册

zhizhi

AI azure openai AIGC zhizhi

Spring Cloud OpenFeign - 远程调用

java易二三

Java spring 程序员 计算机 科技

Presto 设计与实现(二):一切从 0 开始?

冰心的小屋

数据湖 presto presto 设计与实现

产品经理:实现一个微信输入框

南城FE

JavaScript 微信 前端 交互 输入框

搜文本搜位置搜图片,1小时玩转Elasticsearch

阿里云大数据AI技术

软件测试 | 查看隐藏表单域

测吧(北京)科技有限公司

测试

敏捷采购:如何在采购中应用敏捷方法

ShineScrum

敏捷 敏捷采购

软件测试 | 使用以URL方式编码的数据

测吧(北京)科技有限公司

测试

WPS Office AI实战总结,智能化办公时代已来

MavenTalker

Microsoft 365 Copilot WPSAI

软件测试 | 修改特定的元素属性

测吧(北京)科技有限公司

软件测试 | 计算散列值

测吧(北京)科技有限公司

测试

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章