写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031459

评论

发布
暂无评论
发现更多内容

UUID意想不到的block

FunTester

什么是大模型?一文读懂大模型的基本概念

九章云极DataCanvas

Golang面试题从浅入深高频必刷「2023版」

王中阳Go

Go golang 面试题 大厂面经 最新面试题

安全好用的远程协同运维软件重点推荐-行云管家

行云管家

远程运维 运维软件 远程系统 远程协同 协同运维软件

用友全球司库十问(六)|新一代票据能力如何实现赋能企业票据管理?

用友BIP

全球司库 票据管理

调用API接口获取淘宝商品评论:方法与实战

Noah

腾讯云入选 2023Gartner分布式混合基础设施魔力象限

ToB行业头条

线上JAVA应用平稳运行一段时间后出现JVM崩溃问题 | 京东云技术团队

京东科技开发者

Java 定时任务 JVM 企业号11月PK榜

助力工业数字化!TDengine 与恩菲 MIM+ 工业互联网平台实现兼容性互认

TDengine

tdengine 时序数据库

架构实战营 - 模块四作业

王朝阳

架构实战营

对话在行人|合众思壮:基于用友BIP重塑业务应用,推进业财融合

用友BIP

对话在行人 数智化领先实践

如何使用 Loadgen 来简化 HTTP API 请求的集成测试

极限实验室

集成测试 loadgen 极限科技

云工作流 CloudFlow 重磅发布,流程式开发让云上应用构建更简单

Serverless Devs

阿里云 Serverless 函数计算FC

微前端无界机制浅析 | 京东物流技术团队

京东科技开发者

前端 源码剖析 微前端 无界 企业号11月PK榜

火山引擎云原生存储加速实践

字节跳动云原生计算

大数据 云原生 存储

即时通讯技术文集(第22期):IM安全相关文章(Part1) [共13篇]

JackJiang

网络编程 即时通讯 IM

企业制作网站时为何香港云服务器成为首选?

一只扑棱蛾子

香港云服务器

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章