写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031358

评论

发布
暂无评论
发现更多内容

校源行 | 开放原子开源社团(西北工业大学)授牌仪式成功举行

开放原子开源基金会

Sentinel源码改造,实现Nacos双向通信!

王磊

Java

LAS Spark+云原生:数据分析全新解决方案

字节跳动数据平台

数据库 大数据 数据中台 数据研发 企业号10月PK榜

PaddleX解决分类、检测两大场景问题?实战精讲教程来了!

飞桨PaddlePaddle

AI 飞桨 套件

代码的艺术 - Writing Code Like a Pianist | 京东云技术团队

京东科技开发者

代码质量 整洁代码 企业号10月PK榜 系统质量

小程序技术在信创操作系统里的应用趋势

没有用户名丶

英语学习工具:Eudic欧路词典 for Mac增强版

展初云

Mac 欧路词典 英语学习工具

李彦宏:我们即将进入一个AI原生的时代|百度世界2023

飞桨PaddlePaddle

百度 大模型 文心一言

全面解析内存泄漏检测与修复技术

华为云开发者联盟

程序员 开发 内存 华为云 华为云开发者联盟

跬智信息(Kyligence)成为信创工委会技术活动单位

Kyligence

大数据分析

Youtrack Linux 安装

HoneyMoose

使用 ChaosBlade 验证 DLRover 的弹性和容错的稳定性

AI Infra

人工智能 开源 开发者 云原生 大模型

List.of() Vs Arrays.asList()

越长大越悲伤

Java

使用流量管理工具保护 Kubernetes 的六种方法

NGINX开源社区

Kubernetes DOS攻击 Web应用防火墙 原生云

百度世界大会2023重磅发布进行时,小度全新智能音箱重构家居美学新乐章

新消费日报

推动产业升级及创新,Doris Summit Asia 2023 先进智造与电信论坛提前揭秘

SelectDB

数据库 大数据 数据仓库 实时数仓 apache doris

我与极客时间的故事

穿过生命散发芬芳

我和极客时间的故事

SoundSource for mac(音量控制工具)

展初云

Mac软件 音量调节

原料所属权管理领先实践,助力造币厂来料加工原料管理降本增效

用友BIP

领先实践 原料所属权管理

如何从构建到运营?数科公司数智创新研讨会成功举办

用友BIP

数科公司

商用显示设备包括哪些?

Dylan

企业 设备 显示器 LED显示屏

DevOps2023现状报告|注重文化、以用户为中心是成功的关键

SEAL安全

人工智能 DevOps DORA 企业号10月PK榜 技术报告

QSpace Pro for Mac(多窗文件管理器)

展初云

文件管理 Mac软件

图文结合丨Prometheus+Grafana+GreatSQL性能监控系统搭建指南(下)

GreatSQL

greatsql

小巧高效的音频录制 Piezo 最新激活版

胖墩儿不胖y

Mac软件 音频处理器 音频录制

用友 Fast by BIP引领专业技术服务企业快速迈向数智化创新

用友BIP

Fast by BIP

玩转MaxCompute SQL训练营! 数据分析挖掘迅速出师

阿里云大数据AI技术

大数据 数据分析

以烟草行业为例,聊聊如何基于 PLC + OPC + TDengine,快速搭建工业生产监测系统

TDengine

tdengine 时序数据库

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章