写点什么

这一次,人工智能的冬天不会再降临

  • 2020-04-14
  • 本文字数:1739 字

    阅读完需:约 6 分钟

这一次,人工智能的冬天不会再降临

我们大家都知道,在人工智能历史上曾经历过两次“冬天”,那么,究竟会不会有第三次人工智能冬天,众说纷纭。InfoQ 中文站曾经翻译并分享过相关的文章,如《我们即将迎来另一个 AI 寒冬吗?》、《抵御另一个人工智能冬天的最后一道防线》、《专家:用 “寒冬” 来描述 AI 的新阶段是错误的,应称为 “AI 秋天”》、《人人恐惧 AI 寒冬,他却希望泡沫再破裂一次》等等,这次我们带来了 Caleb Kaiser 的新文章,他认为这次人工智能冬天不会再有了。



本文最初发表在 Towards Data Science,经原作者 Caleb Kaiser 授权,InfoQ 中文站翻译并分享。


机器学习不是什么“天网”或“灭霸”之类的命题。


每隔几周,就会一篇新的文章发表,预言人工智能冬天即将来临。这些文章的观点都很雷同:


  • 深度学习的力量被公众夸大了;

  • 我们离人工智能比报道的还要远;

  • 之前的人工智能冬天也是由类似的炒作泡沫引起的。


尽管上述所有观点在某种程度上都是正确的,但这些观点忽略了一些重要的东西:一场类似于发生在 20 世纪 80 年代的人工智能冬天,当时机器学习研究和资金投入增长放缓的现象,这在今天已经不可能再出现了。


但我们也要承认:我们离通用人工智能和完全自动驾驶汽车还很远


在过去几年,Starsky Robotics 作为少数几家将全自动驾驶汽车推向市场的科技公司之一,一直被各大媒体报道。他们有可行的演示,充足的资金和一支有才能的团队。


但就在今年三月份,Starsky Robotics 最终还是倒闭了。创始人 Stefan Seltz-Axmacher 在事后调查分析中清楚阐明了核心原因:监督式机器学习并不像炒作的那样。


当然,他所指的炒作是来自创始人、记者和爱好人工智能的狂热者无休止地承诺,称通用人工智能和全自动驾驶汽车这样的技术离我们只有数月之遥。正如 Seltz-Axmacher 所说的那样:相反,(研究人员的)共识是,我们至少还有 10 年的时间才能实现全自动驾驶汽车。


过去,人工智能冬天是由类似的令人兴奋的研究周期造成的,导致过高的预期,由于无法实现,从而让失望的投资者和工程师放弃,但这一次情况已经不同了。


这一次,即使深度学习最宏伟的承诺没有兑现,但另有一些事情还是发生了:机器学习已经变得有利可图。

生产机器学习无处不在

来看看世界上最流行的应用程序:


  • Netflix、YouTube、Facebook、Amazon、Instagram、Spotify 和 TikTok,这些应用都严重依赖基于机器学习的推荐引擎。

  • Snapchat、Instagram 和 TikTok 都使用计算机视觉模型来帮助用户创建、编辑和分类可视化内容。

  • Gmail 和 Messenger 都使用自然语言处理为用户增强消息传递功能:过滤垃圾邮件、建议文本、对邮件进行分类等。

  • Google Maps、Uber 和 Lyft 依靠机器学习来计算准确的车辆预计到达时间。


这些都是世界上有价值的科技公司的旗舰产品,这些公司也是机器学习研发的幕后推手。如果你认为这些公司中的任何一家仅仅因为不能建造类似天网那样的产品就停止对机器学习的投资,那就错了。


生产机器学习也并不仅局限于科技巨头,许多初创公司已经将基于应用机器学习的产品推向了市场:


  • Onfido 使用机器学习为全球 1500 多家金融机构提供身份验证服务。

  • Ezra 利用计算机视觉提供全身癌症筛查,目前在美国三个州开展业务,而且还在增长。

  • AI Dungeon 运营着一款基于 OpenAI 的 GPT-2 构建的机器学习驱动的文字冒险游戏,这款游戏有超过 100 万名玩家。


在几乎所有行业,如医药、农业、金融、安全等,有些公司已经成功地将机器学习产品推向市场。

机器学习不再是赌注

在过去几十年,炒作周期之所以能够击垮人工智能的投资,是因为人工智能以及机器学习,本质上就是一种赌注。


创始人和研究人员都在猜测机器学习在未来可能都有哪些商业应用。当这些赌注没有得到回报,市场就崩塌了。


机器学习已经不再是一个推测性命题,现在已经是一种广泛应用的、商业上可行的技术,为世界上一些最受欢迎(且盈利)的公司提供动力。Google 也不会因为 Starsky Robotics 和 OpenAI(它们代表了历史上一些最雄心勃勃的技术项目)遇到一些挫折就打算解散 Google Brain,也不会因此停止资助 TensorFlow。所以,这一次,人工智能冬天不会来临。


作者介绍:


Caleb Kaiser,Cortex Lab 创始团队成员,曾在 AngelList 工作,最初在 Cadillac 供职。


原文链接:


https://towardsdatascience.com/there-wont-be-an-ai-winter-this-time-332a4b6d6f07


2020-04-14 11:512187
用户头像
赵钰莹 InfoQ 主编

发布了 882 篇内容, 共 641.2 次阅读, 收获喜欢 2679 次。

关注

评论

发布
暂无评论
发现更多内容

AIGC热潮涌动 HashData如何降低大模型应用门槛?

酷克数据HashData

技术分享 | app自动化测试(Android)--显式等待机制

霍格沃兹测试开发学社

开放原子开源基金会开源安全委员会七月新增成员单位

开放原子开源基金会

开放原子开源基金会

干货 | 在Docker 上搭建持续集成平台 Jenkins

霍格沃兹测试开发学社

落地大模型应知必会(3): 如何构建多任务的LLM应用

Baihai IDP

人工智能 AI LLM 白海科技 落地大模型应用

Linux之select、poll、epoll讲解

java易二三

Linux 程序员 计算机

浅谈测试需求分析

霍格沃兹测试开发学社

Apache Paimon 在同程旅行的实践进展

Apache Flink

大数据 flink 实时计算

持续交付-Pipeline入门

霍格沃兹测试开发学社

秒杀库存解决方案

Java研究者

架构 高性能 秒杀 电商系统 库存系统

山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务

山东布谷科技

nginx 软件开发 服务器 源码搭建 直播软件源码

矩阵起源入选《2023中国数据库领域最具商业合作价值企业盘点》

MatrixOrigin

数据库 云原生 超融合 MatrixOrigin 矩阵起源

智奇数美:用下沉思维做产品,深挖呼叫中心产业新蓝海

江湖老铁

Spring 中 @Qualifier 注解还能这么用?

江南一点雨

Java spring

实力!云起无垠获ISC 2023创新独角兽沙盒大赛“创新能力奖”

云起无垠

JaCoCo助您毁灭线上僵尸代码 | 京东物流技术团队

京东科技开发者

Java JACOCO 企业号 8 月 PK 榜 僵尸代码

对线面试官 - TCP经典面试题

派大星

TCP/IP Java 面试题

Health Kit基于数据提供专业方案,改善用户睡眠质量

HarmonyOS SDK

HMS Core

接口协议之抓包分析 TCP 协议

霍格沃兹测试开发学社

技术分享 | app自动化测试(Android)-- 参数化用例

霍格沃兹测试开发学社

推荐工具!使终端便于 DevOps 和 Kubernetes 使用

SEAL安全

git Kubernetes zsh DevOps工具 企业号 8 月 PK 榜

传统企业的智能化IPD(产品集成开发)转型

禅道项目管理

接口测试框架实战(一) | Requests 与接口请求构造

霍格沃兹测试开发学社

LangChain系列-02. LLM基础

无人之路

openai ChatGPT langchain

Kafka入门

霍格沃兹测试开发学社

简洁又优雅!Controller层代码就该这么写!

java易二三

Java 程序员 面试 计算机 八股文

802.11ac VS 802.11ax represents chips IPQ4019 and IPQ5018-support MU-MIMO-OFDMA-TWT technology

wifi6-yiyi

wifi6 wifi5

《Java极简设计模式》第01章:单例模式(Singleton)

冰河

Java 程序员 设计模式 架构师 java基础

InCopy 2023 for mac(专业排版软件) v18.3中文激活版

mac

苹果mac Windows软件 InCopy 2023 IC2023 排版软件

基于飞桨图学习框架实现的城市地点动态关系挖掘

飞桨PaddlePaddle

人工智能 paddle 百度飞桨 开发者说

使用Fastmonkey进行iosMonkey测试初探

霍格沃兹测试开发学社

这一次,人工智能的冬天不会再降临_语言 & 开发_Caleb Kaiser_InfoQ精选文章