写点什么

Facebook 新研究:使用 CNN 将任何 2D 照片转换为 3D

  • 2020-03-05
  • 本文字数:2234 字

    阅读完需:约 7 分钟

Facebook 新研究:使用CNN将任何2D照片转换为3D

Facebook 的 3D 照片功能于 2018 年推出,是一种全新的、沉浸式的照片格式,用于与朋友和家人分享照片。不过,在当时,这一功能依赖于只有新款高端智能手机才有的双镜头“肖像模式”功能。因此,这一功能无法在只有一个后置镜头的典型移动设备上使用。为了让更多的人能够用上这种全新的视觉形式,Facebook 近日发布了一项研究,使用了最先进的机器学习技术,能够将几乎任何标准的 2D 照片转换为3D 照片。这个系统可以推断出任何图像的 3D 结构,无论是用标准单镜头在 Android 和 iOS 设备拍摄的新照片,还是最近上传到手机或笔记本电脑上的几十年前的老照片。


以下内容整理自 Facebook AI 博客:


这一技术进步使得数以百万计使用单镜头照相手机或平板电脑的人们第一次可以轻松地接触到 3D 照片技术。它还可以让每个人以一种全新的方式体验几十年前的家庭照片和其他珍贵的图像,将它们转换成 3D 照片。拥有最先进的双镜头设备的人也能从中受益,因为他们现在可以使用唯一的前置镜头进行 3D 自拍。任何拥有 iPhone 7 或更高版本,或者最近的中端或更好的 Android 设备的人,现在都可以在 Facebook 的应用程序中尝试这项技术。


该动画显示了如何估计一幅 2D 图片的不同区域的深度,以创建一幅 3D 图像。


构建这种增强的 3D 照片技术需要克服各种技术挑战,例如,训练模型,以正确推断出极其广泛主题的 3D 位置,并优化系统,使其能够在不到一秒的时间内,就能在典型移动处理器的设备上运行。为了克服这些挑战,研究人员在数百万的公共 3D 图像及其相应的深度图上训练了卷积神经网络,并利用了 Facebook AI 之前开发的各种移动优化技术,如 FBNetChamNet 等。(技术团队还讨论了最近在 3D 理解方面的相关研究,参见:《推动 3D 内容理解的最新进展》(Pushing the state of the art in 3D content understanding))


现在,这一功能对所有 Facebook 用户可用,本文将分享构建这一功能的细节。



小狗的原始照片是用单镜头相机拍摄的,并不包含任何深度图的数据。系统将其转换成 3D 图像,如图所示。

在移动设备上提供高效性能

给定一幅标准的 RGB 图像,3D Photos CNN (3D 照片卷积神经网络)可以估计每个像素到相机的距离。技术团队通过以下四种方式实现了这一点:


  • 使用一组可参数化的、可移动优化的神经构建块来构建的网络架构。

  • 将架构搜索自动化以查找这些块的有效配置,使系统能够在不到一秒的时间在各种设备上执行任务。

  • 量化感知训练,可在移动设备上利用高性能的 int8 量化,同时最大限度降低量化过程带来的潜在质量下降。

  • 大量的训练数据源自公开的 3D 照片。

神经构建块

该项目的架构使用了受 FBNet 启发的构件块,FBNet 是一个用于优化移动设备和其他资源受限设备的 ConvNet 架构的框架。一个构建块由逐点卷积(pointwise convolution)、可选采样和深度卷积组成。团队实现了一个 U-net 风格的架构,该架构已经被修改为沿着残差连接(skip connection)放置 FBNet 构建块。U-net 编码器和解码器各包含五个阶段,每个阶段对应不同的空间分辨率。



网络架构概述。该网络架构是一个 U-net,沿着残差连接放置了额外的宏级构建块。

自动架构搜索

为了找到一个有效的架构配置,研发人员使用 ChamNet 将搜索过程自动化,这是 Facebook AI 开发的一个算法。ChamNet 算法从搜索空间采样点训练正确度预测器,该正确度预测器用于加速遗传搜索,以找到在满足特定资源约束的前提下,使预测正确度最大化的模型。在这个设置中,使用一个搜索空间,该搜索空间改变了通道扩展因子和每个块的输出通道数,从而产生 3.4\times 10^{22} 个可能的架构。然后,使用 800 块 Tesla V100 GPU,在大约三天内完成搜索,设置并调整模型架构上的 FLOP 约束,以实现不同的操作点。

量化感知训练

默认情况下,模型使用单精度浮点权重和激活进行训练,但研究人员发现,将权重和激活量化为仅 8 位具有显著优势。特别是,int8 权重只需 float32 权重所需存储空间的四分之一,从而减少首次使用时必须传输到设备的字节数。



这些图像都是从普通的 2D 图像开始,然后通过深度估计神经网络转换成 3D 图像。


由于 Facebook AI 的 QNNPACK 等经过调优的库已经整合到 PyTorch 中,因此与 float32 相比,基于 int8 的运营商的吞吐量要高得多。团队通过使用量化感知训练(quantization-aware training,QAT)来避免由于量化导致的不可接受的质量下降。QAT(现已作为 PyTorch 的一部分提供)在训练过程中模拟量化并支持反向传播,从而消除了训练和生产性能之间的差距。



神经网络可处理各种内容,包括场景复杂的绘画和图像。

寻找创造 3D 体验的新方法

除了完善和改进深度估计算法,Facebook AI 团队还致力于为移动设备拍摄的视频提供高质量的深度估计。视频是一个值得注意的场景,因为视频中每一帧的深度必须与下一帧保持一致,但这也是一个提高性能的机会,因为对同一目标的多次观测可以为高正确度的深度估计提供额外信号,Facebook 预计将向用户开放多种创新的内容创作工具。随着团队不断提高神经网络的性能,未来还将探索利用深度估计、表面法线估计(surface normal estimation)和空间推理的应用。


除了这些潜在的新体验外,这项工作还将帮助技术团队更好地全面理解 2D,提高对 3D 场景的理解也可以帮助机器人导航并与现实世界进行互动。作者表示,希望通过分享 3D 照片系统的细节,能够帮助人工智能社区在这些领域取得进展,并创造 3D 新体验。


作者介绍:


Kevin Matzen、Peizhao Zhang,研究科学家;Matthew Yu、Jonathan Lehman,软件工程师;Jan-Michael Frahm、Peter Vajda、Johannes Kopf,研究科学主管;Matt Uyttendaele,工程总监。


2020-03-05 14:471963
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 288.5 次阅读, 收获喜欢 1303 次。

关注

评论

发布
暂无评论
发现更多内容

【一定要看哦】转瞬之间的成长,传播知识的梦想(赠予极客邦【1周年】)

码界西柚

程序人生 1 周年盛典 InfoQ 写作平台 1 周年 InfoQ 的朋友们

北美一工作搜索引擎公司技术岗面经

HoneyMoose

ceph-csi源码分析(3)-rbd driver-服务入口分析

良凯尔

Kubernetes 源码分析 Ceph CSI

Python3 print变量打印输出功能后面隐含的几个知识点

老猿Python

Python print str repr

uni-app rtm插件集成指南及常见问题--iOS

anyRTC开发者

uni-app ios 音视频 WebRTC sdk

中国区块链产业全景图

CECBC

技术应用

客服中心简单分析

zzz

图的学习总结

Nick

数据结构 数据结构与算法

vue+webpack+vue-cli

Vue js 打包 webpack vuecli

Faiss源码剖析:类结构分析

华为云开发者联盟

机器学习 KNN Faiss 类结构 Quantizer

让宝妈宝爸告别安全顾虑,区块链构建母婴行业新生态

CECBC

母婴

迪安精选:那些好用的浏览器扩展

迪安

浏览器 插件 扩展

一房地产数据服务初创公司的面经

HoneyMoose

量化策略倍投系统搭建,马丁策略交易

飞桨中国行落地合肥,与当地企业共话产业智能化升级

百度大脑

智能化 飞桨中国行

一文带你了解华为云GaussDB的五大黑科技

华为云开发者联盟

数据库 华为云 GaussDB(for Influx) 时间线 tpmC

软件 IT 专业大学生职业方向情况调查

李孟聊AI

大学生日常 IT 大学生

ceph-csi源码分析(4)-rbd driver-controllerserver分析

良凯尔

Kubernetes 源码分析 Ceph CSI

云图说|ModelArts Pro,为企业级AI应用打造的专业开发套件

华为云开发者联盟

AI 企业应用 ModelArts Pro 开发套件

Kubernetes 上如何控制容器的启动顺序?

张晓辉

Kubernetes istio

人类视觉神经科学助力音视频产业革命-弱网下的极限实时通信

张音乐

音视频 笔记 弱网下的极限实时视频通信

弱网下的极限视频通信学习感悟!

txp

音视频

耗时5小时,用低代码搭了2套应用,我才明白它为什么能火了

优秀

低代码 低代码开发 低代码开发平台 低代码平台

浙江宁波市区块链研究机构发布首个全国性公证联盟运营链

CECBC

区块链

抵制羊毛党,图计算“加持”互联网电商风控

华为云开发者联盟

风控 图计算 互联网电商 羊毛党

GitHub开源的中国亲戚关系计算器

不脱发的程序猿

GitHub 开源 程序员 4月日更 中国亲戚关系

SpringSecurity+JWT认证流程解析

学Java关注我

Java 编程 程序人生 计算机 架构】

golang单元测试踩坑系列(一)

geange

单元测试 Go 语言

First Unique Character in a String 的变种问题返回第一个找到符合条件的字符

HoneyMoose

LeetCode题解:191. 位1的个数,位运算,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

NumPy之:数据类型对象dtype

程序那些事

Python 数据分析 Numpy 程序那些事

Facebook 新研究:使用CNN将任何2D照片转换为3D_AI&大模型_Facebook 博客_InfoQ精选文章