写点什么

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

  • 2019-10-18
  • 本文字数:2706 字

    阅读完需:约 9 分钟

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

作为肠胃科医生和皮肤科医生的后代,在我的成长过程中一直充满了各种晦涩难懂的对话,包含无穷无尽的复杂医学术语:人类解剖学、外科手术、药物名称……以及它们的缩略词。充满求知欲的小孩想知道他的父母是否对这些奇怪的话语感到难以理解,这真的是一段有趣的经历。


因此,非常高兴能发布 Amazon Comprehend Medical,这是 Amazon Comprehend 针对医疗保健客户的延伸。


关于 Amazon Comprehend 的简介


Amazon Comprehend 于去年在 AWS re:Invent 启用。简单来说,该自然语言处理服务针对语言检测、个体分类、情感分析和关键词提取提供了简洁实时 的 API。此外,它还允许您采用名为“主题建模”的无导师学习技术自动编组文本档案。


使用 FINRA、LexisNexis 或 Isentia、Amazon Comprehend 可以理解一般用途的文本。然而,鉴于临床资料非常特殊的属性,医疗保健客户已经要求我们设立专为其特殊需求而定制的 Amazon Comprehend 版本。


隆重推出 Amazon Comprehend Medical


Amazon Comprehend Medical 设于 Amazon Comprehend 顶部,并增加了以下功能:


  • 支持在大量医疗术语词汇中进行个体提取和个体识别:解剖、病情、手术、药物、缩略词等。

  • 在这些类目和子类中精确查找个体提取 API (detect_entities) 。

  • 受保护健康信息提取 API (detect_phi) 可以查找详细联系信息、医疗记录号等。

  • 提醒:Amazon Comprehend Medical 可能无法准确识别所有情况下的受保护健康信息,无法满足 HIPAA 的受保护健康信息去识别化要求。您有责任审阅 Amazon Comprehend Medical 提供的任何输出信息,以确保其满足您的需求。


现在,让我向您展示如何使用这一新服务。首先,我将使用 AWS 控制台,然后会运行一个简单的 Python 示例。


在 AWS 控制台上使用 Amazon Comprehend Medical


打开 AWS 控制台,所有需要做的是粘贴部分文本并点击“分析”按钮。



正在分析文本立即处理文档。个体被提取出来并突出显示:我们看到个人信息为橙色,药物为红色,解剖学信息为紫色,病情为绿色。



准确获得个人识别信息。对于在交流或出版前需要对文档隐去姓名资料的研究者而言,这是非常重要的。而且,“皮疹”和“睡眠障碍”被准确检测为由医生诊断出的病情(‘Dx’ 是“诊断”的速记写法)。也会检测到药物。


然而,Amazon Comprehend Medical 不仅限于简单的医疗术语提取。它还可以理解复杂的关系,如药物剂量或详细的诊断信息。这有一个很好的例子。



如您所见,Amazon Comprehend Medical 可以找出 ‘po‘ 和 ‘qhs‘ 等缩略词:第一个表示药物为口服,第二个则为 ‘quaque hora somni‘(是的,拉丁语)的缩略词,即为睡前。


现在,让我们稍微深入一点,运行一个 Python 示例。


用 AWS SDK 针对 Python 使用 Amazon Comprehend Medical


首先,我们输入 boto3 SDK,创建一个服务客户端。


import boto3comprehend = boto3.client(service_name='comprehendmedical')
复制代码


现在,我们在文本样本中调用 detect_entity API,并打印检测到的个体。


text = "Pt is 40yo mother, software engineer HPI : Sleeping trouble on present dosage of Clonidine.Severe Rash  on face and leg, slightly itchy  Meds : Vyvanse 50 mgs po at breakfast daily, Clonidine 0.2 mgs -- 1 and 1 / 2 tabs po qhs HEENT : Boggy inferior turbinates, No oropharyngeal lesion Lungs : clear Heart : Regular rhythm Skin :  Papular mild erythematous eruption to hairline Follow-up as scheduled"
result = comprehend.detect_entities(Text=text)entities = result['Entities']for entity in entities: print(entity)
复制代码


看一下该药物个体:它有三个嵌套属性(剂量、路径和频率),三个属性增加了至关重要的上下文。


{u'Id': 3,u'Score': 0.9976208806037903,u'BeginOffset': 145, u'EndOffset': 152,u'Category': u'MEDICATION',u'Type': u'BRAND_NAME',u'Text': u'Vyvanse',u'Traits': [],u'Attributes': [  {u'Id': 4,     u'Score': 0.9681360125541687,     u'BeginOffset': 153, u'EndOffset': 159,     u'Type': u'DOSAGE',     u'Text': u'50 mgs',     u'Traits': []     },  {u'Id': 5,     u'Score': 0.99924635887146,     u'BeginOffset': 160, u'EndOffset': 162,     u'Type': u'ROUTE_OR_MODE',     u'Text': u'po',     u'Traits': []     },  {u'Id': 6,     u'Score': 0.9738683700561523,     u'BeginOffset': 163, u'EndOffset': 181,     u'Type': u'FREQUENCY',     u'Text': u'at breakfast daily',     u'Traits': []     }]}
复制代码


还有另一个例子。该病情个体由“否定”识别完成,意味着未检测到病情,即为该患者没有任何口咽病变。


{u'Category': u'MEDICAL_CONDITION',u'Id': 16,u'Score': 0.9825472235679626,u'BeginOffset': 266, u'EndOffset': 286,u'Type': u'DX_NAME',u'Text': u'oropharyngeal lesion',u'Traits': [    {u'Score': 0.9701067209243774, u'Name': u'NEGATION'},    {u'Score': 0.9053299427032471, u'Name': u'SIGN'}]}
复制代码


我向为您展示的最后一个功能是用 detect_phi API 提取个人信息。


result = comprehend.detect_phi(Text=text) entities = result['Entities'] for entity in entities: print(entity)
复制代码


在该文本中出现了几条个人信息,我们精确提取出了这几条个人信息。


{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 6, u'EndOffset': 10, u'Text': u'40yo',u'Traits': [],u'Score': 0.997914731502533,u'Type': u'AGE', u'Id': 0}
{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 19, u'EndOffset': 36, u'Text': u'software engineer',u'Traits': [],u'Score': 0.8865673542022705,u'Type': u'PROFESSION', u'Id': 1}
复制代码


如您所见,Amazon Comprehend 可帮助您提取复杂的信息和关系,同时操作起来特别简单。


再次提醒,请记得 Amazon Comprehend Medical 并非专业医疗设备、诊断或治疗的替代品。您肯定要仔细审阅它提供的任何信息,并在作出决定前根据经验进行判断。


现已推出


我希望这篇博文提供了丰富的有用信息。您现在就可以开始用 Amazon Comprehend Medical 在以下地区开发应用程序:美国东部(弗吉尼亚北部)、美国中部(俄亥俄)、美国西部(俄勒冈)和欧洲(爱尔兰)。


此外,该服务属于 AWS 免费套餐范畴:注册后三个月,前 25000 份(或 250 万字)文本免费。


为什么不在最近的处方或医学考试中试一试,并让我们了解您的想法呢?


— Julien;


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/amazon-comprehend-medical-natural-language-processing-for-healthcare-customers/


2019-10-18 12:31754
用户头像

发布了 1855 篇内容, 共 121.9 次阅读, 收获喜欢 78 次。

关注

评论

发布
暂无评论
发现更多内容

Java程序员如何快速设计一个高并发系统?

了不起的程序猿

程序员 后端 架构师 java面试 Java高并发

Steinberg Cubase Pro 14 for Mac(多功能音乐制作)v14.0.5激活版

iMac小白

After Effects 2024 for Mac(AE2024视频特效)v24.1中文激活版

iMac小白

央视聚焦!揭秘千行百业背后的“算力引擎”!

Geek_2d6073

性能与网络统计:如何用 Linux 三剑客高效统计和优化系统资源

测吧(北京)科技有限公司

测试

亲测好用的低代码开发平台

伤感汤姆布利柏

通过精益管理扭转亏损后,这家企业开始向管理提升要效益

AMT企源

精益管理 钢铁企业

JVM实战—JVM垃圾回收的算法和全流程

不在线第一只蜗牛

Java JVM

从 Nginx 日志到关键数据指标:三剑客实战解析日志分析

测吧(北京)科技有限公司

测试

给 Postgres 写一个向量插件 - 介绍

极限实验室

Postgrest vector database

CCleaner pro for mac(全能型系统优化软件)v1.18.30汉化免激活版

iMac小白

Pioneer DJ rekordbox for Mac(专业的DJ音乐管理软件) 激活版

iMac小白

TikTok海外直播加速方法有哪些?

Ogcloud

海外直播专线 海外直播 tiktok直播专线 海外直播网络 海外直播IP

Rhinoceros 8 for Mac(犀牛8 mac版)中文激活版

iMac小白

Spring全家桶的学习顺序是什么?

了不起的程序猿

spring 架构师 springboot SpringCloud java面试

摇滚&黑客演唱会回归 1月11日北京不见不散!

Geek_2d6073

sublime text for Mac(代码编辑器)v4.0(4189)中文注册版

iMac小白

EIP和NAT结合如何实现统一公网出口IP

天翼云开发者社区

NAT网关 EIP

ShareMouse for mac(跨平台鼠标和键盘共享软件)v6.0.59激活版

iMac小白

Fig Player - play mp4 mkv mp3 for Mac(媒体播放器)v1.3.16 激活版

iMac小白

2024京东零售技术最受欢迎的10篇好文

京东零售技术

sed 流式编辑:Linux 中流畅修改文件内容的最佳实践

测吧(北京)科技有限公司

测试

块级迁移和文件级迁移的区别

天翼云开发者社区

块级迁移 文件级迁移

KeyShot 2023 Pro for mac(3D渲染和动画制作软件)v12.2.2.4激活版

iMac小白

进阶命令 curl 与 jq:如何在 Linux 中进行接口请求和 JSON 数据处理

测吧(北京)科技有限公司

测试

MestReNova for Mac(专业核磁数据处理软件)v14.2.3中文激活版

iMac小白

Alfred 5 for Mac(苹果应用快速启动器)激活版

iMac小白

foobar2000 for mac(多功能音频播放器)v2.24.1免激活版

iMac小白

Linux 性能优化实战:利用三剑客进行进程监控与资源管理

测吧(北京)科技有限公司

测试

微店API接口深度探索:如何高效获取商品详情及简短代码示例

代码忍者

微店商品详情API接口 微店商品列表API

Linux 环境配置全指南:Java、Python、Node.js 和 Android SDK 的高效安装与管理

测吧(北京)科技有限公司

测试

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章