写点什么

Amazon Connect 和 Amazon Lex 集成

  • 2019-11-12
  • 本文字数:2763 字

    阅读完需:约 9 分钟

Amazon ConnectAmazon Lex 这两项我最喜欢的服务最近推出了一些增强功能,我非常高兴有机会与大家分享这些功能。Amazon Connect 是一项基于云的自助式联络中心服务,可使任何企业能够轻松地以更低成本提供更优质的客户服务。Amazon Lex 是一项使用语音和文本构建对话界面的服务。通过将这两项服务相集成,您可以利用 Lex 的自动语音识别 (ASR) 和自然语言处理 (NLU) 功能为客户打造自助式体验。为了做到这一点,Amazon Lex 团队创建了新的深度学习模型,专门用来识别 8kHz 音频样本中的呼叫中心对话,稍后我将对此进行详细介绍。如果自动程序可以处理 90% 的客户请求,则客户等待时间将会减少,从而有更多时间来使用您的产品。


如需 Amazon ConnectAmazon Lex 的更多背景信息,我强烈建议您阅读 Jeff 之前发布的有关这两项服务的帖子 [1][2] (尤其是在您喜欢 LEGO 的情况下)。



接下来,我将向您展示如何使用这项新集成。大家也许知道,我喜欢在自己的 Twitch 频道上试用这些服务。我会选择一款我们针对 Twitch 频道构建的应用程序,然后针对博客进行修改。在这款应用程序的核心,用户拨打 Amazon Connect 号码后,随即会出现一系列“连锁反应”:将用户连接到 Amazon Lex 自动程序,自动程序调用 AWS Lambda 函数,而函数随后执行一组操作。


我们的应用程序有什么作用呢?我想最终解决哪个代码编辑器最为出色这个问题:我钟爱 Vim,这是一款超赞的编辑器,它的代码编辑功能非常棒 (堪称最好的编辑器)。我的同事 Jeff 偏爱 Emacs,它是一款强大的 操作系统编辑器…如果您的手指头足够灵活的话。另一名同事 Tara 习惯用 Visual Studio 和 Sublime。究竟哪个才是最佳编辑器?无需为此纠结,我想还是让诸位亲爱的读者来投票吧,不要担心您甚至可以为 butterflies投票。


对投票感兴趣?请拨打 +1 614-569-4019,告诉我们您要为哪款编辑器投票!我们不会存储您的号码,也不记录您的语音,尽管放心投票吧,您可为 Vim 多次投票。想看投票的直播吗? http://best-editor-ever.s3-website-us-east-1.amazonaws.com


现在,我们该如何进行巧妙设计呢?

Amazon Lex

我们先看看 Lex 方面的相关设计吧。创建一个名为 VoteEditor 的自动程序,它具有单个目的 VoteEditor、名为 editorConnectToAgent的单个槽。我们会将编辑器槽填满不同``的代码编辑器名称 (或许不会考虑 Emacs)。


AWS Lambda

我们的 Lambda 函数也非常简单。先创建一个Amazon DynamoDB 表来存储投票信息,然后创建帮助程序方法来响应 Lex (build_response),随后再确定逻辑。我们将使用 Python 这种最优秀的语言在最佳编辑器中进行编写。


Python


def lambda_handler(event, context):    if 'VoteEditor' == event['currentIntent']['name']:        editor = event['currentIntent']['slots']['editor']        resp = ddb.update_item(            Key={"name": editor.lower()},            UpdateExpression="SET votes = :incr + if_not_exists(votes, :default)",            ExpressionAttributeValues={":incr": 1, ":default": 0},            ReturnValues="ALL_NEW"        )        msg = "Awesome, now {} has {} votes!".format(            resp['Attributes']['name'],            resp['Attributes']['votes'])        return build_response(msg)    else:        return build_response("That intent is not supported yet.")
复制代码


基本上,如果我们收到某个编辑器的投票,而该编辑器并不存在,那么我们会添加该编辑器并附上 1 次投票。否则会增加该编辑器的得票数 (每次增加 1 票)。非常简单。


我们会告诉 Lex 自动程序使用 Lambda 函数来实现我们的目的。在执行下一步之前,我们可以测试一切是否能在 Lex 控制台中正常运行。


Amazon Connect

接下来就到了有趣的部分了。将 Lex 自动程序连接到 Connect 联系流,然后开始存储这些结果。


在联系流中使用自动程序之前,必须确保 Amazon Connect 实例拥有对它的访问权限。为此,我们需要转到 Amazon Connect 服务控制台,选择实例,然后导航至联系流。其中应该有一个名为“Amazon Lex”的部分,在那里,您可以添加自己的自动程序!



现在 Connect 实例已经知道 Lex 自动程序可供调用,接下来我们就可以创建包含 Lex 自动程序的新联系流。通过熟悉的“获取客户输入”小部件将自动程序添加到流中,但在单击该小部件时,其中会出现一个新的“Amazon Lex”选项卡。



里面提供有诸多选项,但简单来说,我们要添加使用自动程序的目的、要使用的自动程序版本,以及介绍自动程序的简短提示 (可能会提示客户输入信息)。


我们的最终联系流如下所示:



在真实示例中,系统可能会允许客户通过 Lex 自动程序执行许多事务,然后,根据“Error”或“ConnectToAgent”目的,将客户放入他们可与真人对话的队列中。


在此,我想特别指出教 Lex 理解 8kHz 音频的巨大优势及其如此重要的原因。Lex 最初接受训练时使用的语音模型与电话相比占用较大的带宽信道。当您与 Alexa 或 Lex 自动程序对话时,系统通常会以 16kHz 的最低速率对您发送的文本进行采样。通过这种保真度较高的记录,可更加轻松地识别声音差异,如“ess”(/s/) 和“eff”(/f/),音频专家如是告诉我。如果使用 Alexa,则音频流还会来自我们控制的有限的一些设备,因此,我们确切地知道麦克风发出的声音应是什么样子。但是,电话及其记录的音频依赖由人类植入的一些“卑鄙技巧”。人类及其耳朵非常擅长根据情景来辨识质量较差的录音的内容 (要获取此方面的证据,请参阅 NASA 阿波罗录音)。因此,大多数数字电话系统默认设置为使用 8kHz 采样率 (而非更高采样率),从而使带宽和保真度之间达到了一种较好平衡。这种基本采样率的首要问题是,您还必须应对以下事实:大量电话数据已失真 (您现在能听到我说话吗?)。目前市面上有数百家不同制造商提供的数千种不同设备,以及大量不同的软件实施方案和编解码器。那么,您该如何解决这一识别问题呢?


Lex 团队找出了解决此问题的最佳方法,即,扩展他们用来解析语音输入的模型集,以纳入专为 Connect 集成设计的 8kHz 模型。他们在 8kHz 数据集的真实客户服务呼叫中保留了自己的模型和网络,而且与其传统模型相比,单词识别率提高了 60% 以上。检测各个单词的准确率越高,识别目的的准确率也就越高。团队为此付出了巨大努力,这可让众多客户通过 Connect 执行更多操作。


最后再说明一下,Connect 使用完全相同的 PostContent 终端节点,因此,如果您是外部开发人员,也可使用该节点,而无需通过 Connect 来利用 Lex 中的这项 8kHz 功能。


希望大家都能喜欢这项功能,与往常一样,要了解真实细节,请参阅这些文档API 参考指南


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/new-amazon-connect-and-amazon-lex-integration/


2019-11-12 08:00792

评论

发布
暂无评论
发现更多内容

学好Web前端开发能找到好工作吗

小谷哥

经验分享|企业该怎样利用SaaS进行企业知识管理

Baklib

无套路、无陷阱、无广告 | 这个免费的即时通讯软件确定不用吗?

BeeWorks

Tapdata 与优炫数据库完成产品兼容性互认证

tapdata

数据库 Tapdata 实时数据 交互式 优炫数据库

跟我读论文丨Multi-Model Text Recognition Network

华为云开发者联盟

人工智能 文字识别 语言模型 视觉特征

8个方法管理 GitHub 用户权限

SEAL安全

git GitHub 安全 软件安全 软件供应链安全

如何快速开发一个简单实用的MES系统?

优秀

MES系统

为Python打包创建一个世外桃源,解决打包太大且启动慢的问题

迷彩

pyinstaller 7月月更 Python打包

学习java开发技术有用吗?

小谷哥

这样优化Spring Boot,启动速度快到飞起!

艾小仙

Java 微服务 springboot Eureka 微服务治理

知识分享|分享一些提升企业文档管理水平的方法

Baklib

wallys/new product/DR7915/MT7915+MT7975/WiFi6 MiniPCIe Module 2T2R

wallys-wifi6

“万物互联,使能千行百业”,2022 开放原子全球开源峰会 OpenAtom OpenHarmony 分论坛即将开幕

kk-OSC

开源 开放原子全球开源峰会

【干货】知识共享的障碍及解决方法

Geek_da0866

图的基本定义和概念(二)

乔乔

7月月更

tsconfig.json在配置文件中找不到任何输入,怎么办?

华为云开发者联盟

JavaScript 前端

学习大数据技术之前做好这些准备

小谷哥

DistSQL 深度解析:打造动态化的分布式数据库

SphereEx

数据库 开源社区 ShardingSphere SphereEx #开源

李宏毅《机器学习》丨5. Tips for neural network design(神经网络设计技巧)

AXYZdong

机器学习 7月月更

鼓励企业知识共享的好处,你知道多少?

Geek_da0866

N分钟学会分位值的计算方式

眼镜盒子

指标

极客星球丨字节跳动一站式数据治理解决方案及平台架构

MobTech袤博科技

架构 运维 数据治理 全链路

智能运维场景解析:如何通过异常检测发现业务系统状态异常

云智慧AIOps社区

人工智能 机器学习 异常检测 智能运维 状态管理

算法题每日一练---第4天:图像模糊问题

知心宝贝

算法 前端 后端 7月月更

API策略因何成为企业数字化转型的制胜法宝?

BeeWorks

Review 后台管理系统实战:请求参数的 2 种封装风格

掘金安东尼

前端 编程范式 7月月更

阿里云技术专家郝晨栋:云上可观测能力——问题的发现与定位实践

阿里云弹性计算

DevOps 运维 可观测性

大数据培训机构如何选择

小谷哥

java程序员培训班怎么选?

小谷哥

活动报名:如何零基础快速上手开源的 Tapdata Live Data Platform?

tapdata

开源 开源社区 Tapdata 实时数据

接口文档进化图鉴,有些古早接口文档工具,你可能都没用过

Liam

Postman 接口文档 API swagger API文档

Amazon Connect 和 Amazon Lex 集成_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章